González, L. M. V. and Rodero-Merino, L. (2014). Finding
your way in the fog: Towards a comprehensive def-
inition of fog computing. Computer Communication
Review, 44(5):27–32.
Gu, L., Zeng, D., Guo, S., Barnawi, A., and Xiang, Y.
(2017). Cost efficient resource management in fog
computing supported medical cyber-physical system.
Trans on Emerging Topics in Computing.
El Ioini, N., Pahl, C. and Helmer, S. (2018). A decision
framework for blockchain platforms for IoT and edge
computing. IoTBDS’18.
Jamshidi, P., Pahl, C., Chinenyeze, S. and Liu, X. (2015).
Cloud Migration Patterns: A Multi-cloud Service Ar-
chitecture Perspective. In Service-Oriented Comput-
ing - ICSOC 2014 Workshops. 6–19.
Jamshidi, P., Pahl, C. and Mendonca, N. C. (2016). Man-
aging uncertainty in autonomic cloud elasticity con-
trollers. IEEE Cloud Computing, 50-60.
Jamshidi, P., Pahl, C. and Mendonca, N. C. (2017). Pattern-
based multi-cloud architecture migration. Software:
Practice and Experience 47 (9), 1159-1184.
Mahmud, R., Srirama, S. N., Ramamohanarao, K., and
Buyya, R. (2019). Quality of experience (qoe)-aware
placement of applications in fog computing environ-
ments. J. Parallel Distrib. Comput., 132:190–203.
Manasrah, A. and Ali, H. (2018). Workflow scheduling
using hybrid ga-pso algorithm in cloud computing.
Wireless Comm and Mobile Comp, 2018:1–16.
Mendonca, N. C., Jamshidi, P., Garlan, D. and Pahl, C.
(2020). Developing Self-Adaptive Microservice Sys-
tems: Challenges and Directions. In IEEE Software.
Meng, H., Zhu, Y., and Deng, R. (2017). Optimal comput-
ing resource management based on utility maximiza-
tion in mobile crowdsourcing. Wireless Communica-
tions and Mobile Computing, 2017.
Minh, Q. T., Nguyen, D. T., Le, V. A., Nguyen, D. H., and
Pham, T. V. (2019). Task placement on fog computing
made efficient for iot application provision. Wireless
Communications and Mobile Computing.
Omara, F. A. and Arafa, M. M. (2010). Genetic algorithms
for task scheduling problem. Journal of Parallel and
Distributed Computing, 70(1):13 – 22.
Pahl, C., Jamshidi, P., and Zimmermann, O. (2018). Archi-
tectural principles for cloud software. ACM Transac-
tions on Internet Technology (TOIT), 18(2):17.
Pahl, C., El Ioini, N., Helmer, S. and Lee, B. (2018). An ar-
chitecture pattern for trusted orchestration in IoT edge
clouds. Intl Conf Fog and Mobile Edge Computing.
Pahl, C., Fronza, I., El Ioini, N. and Barzegar, H. R. (2019).
A Review of Architectural Principles and Patterns for
Distributed Mobile Information Systems. In 14th Intl
Conf on Web Information Systems and Technologies.
Pahl, C., Jamshidi, P. and Zimmermann, O. (2020). Mi-
croservices and Containers. Software Engineering
SE’2020.
Rolim, C. O., Koch, F. L., Westphall, C. B., Werner, J.,
Fracalossi, A., and Salvador, G. S. (2010). A cloud
computing solution for patient’s data collection in
health care institutions. eTELEMED.
Saboori, A., Jiang, G., and Chen, H. (2008). Autotuning
configurations in distributed systems for performance
improvements using evolutionary strategies. In Intl
Conf on Distributed Computing Systems.
Samir, A. and Pahl, C. (2020). Detecting and Localizing
Anomalies in Container Clusters Using Markov Mod-
els. Electronics 9 (1), 64.
Sarkar, S., Chatterjee, S., and Misra, S. (2018). Assessment
of the suitability of fog computing in the context of
internet of things. Trans. Cloud Computing.
Scolati, R., Fronza, I., El Ioini, N., Samir, A. and Pahl,
C. (2019). A Containerized Big Data Streaming Ar-
chitecture for Edge Cloud Computing on Clustered
Single-Board Devices. International Conference on
Cloud Computing and Services Science.
Shin, K. G. and Chang, Y. (1989). Load sharing in dis-
tributed real-time systems with state-change broad-
casts. IEEE Trans. Computers, 38(8):1124–1142.
Tata, S., Jain, R., Ludwig, H., and Gopisetty, S. (2017).
Living in the cloud or on the edge: Opportunities and
challenges of iot application architecture. In Intl Conf
on Services Computing (SCC).
von Leon, D., Miori, L., Sanin, J., El Ioini, N., Helmer,
S. and Pahl, C. (2018). A Performance Exploration
of Architectural Options for a Middleware for Decen-
tralised Lightweight Edge Cloud Architectures. Intl
Conf Internet of Things, Big Data & Security.
von Leon, D., Miori, L., Sanin, J., El Ioini, N., Helmer, S.
and Pahl, C. (2019). A Lightweight Container Mid-
dleware for Edge Cloud Architectures. Fog and Edge
Computing: Principles and Paradigms, 145-170.
Wang, Z., Shi, B., and Zhao, E. (2001). Bandwidth-
delay-constrained least-cost multicast routing based
on heuristic genetic algorithm. Computer Communi-
cations, 24:685–692.
Wang, Z., Zhao, Z., Min, G., Huang, X., Ni, Q., and Wang,
R. (2018). User mobility aware task assignment for
mobile edge computing. Future Gen Comp Systems.
Yang, X.-S. (2012). Bat algorithm for multi-objective opti-
misation. arXiv preprint arXiv:1203.6571.
Yousefpour, A., Ishigaki, G., and Jue, J. P. (2017). Fog
computing: Towards minimizing delay in the internet
of things. In Intl Conf on Edge Computing EDGE’17.
Particle Swarm Optimization for Performance Management in Multi-cluster IoT Edge Architectures
337