Lighthill, M. J. and Whitham, G. B. (1955). On kinematic
waves II. A theory of traffic flow on long crowded
roads. Proc. Roy. Soc. A, 229(1178):317–345.
Luspay, T., Kulcsar, B., Varga, I., Zegeye, S. K., De Schut-
ter, B., and Verhaegen, M. (2010). On acceleration
of traffic flow. In Proceedings of the 13th Interna-
tional IEEE Conference on Intelligent Transportation
Systems (ITSC 2010), pages 741–746. IEEE.
Manahan, S. (2017). Environmental chemistry. CRC press.
Nagel, K. and Schreckenberg, M. (1992). A cellular au-
tomaton model for freeway traffic. J. Phys. I France,
2:2221–2229.
Newell, G. F. (1961). Nonlinear Effects in the Dynamics of
Car Following. Oper. Res., 9(2):209–229.
Omidvarborna, H., Kumar, A., and Kim, D.-S. (2015).
NO
x
emissions from low-temperature combustion of
biodiesel made of various feedstocks and blends. Fuel
Process. Technol., 140(Supplement C):113 – 118.
Panis, L. I., Broekx, S., and Liu, R. (2006). Modelling in-
stantaneous traffic emission and the influence of traffic
speed limits. Sci. Total Environ., 371(1-3):270–285.
Phillips, W. F. (1979). A kinetic model for traffic flow with
continuum implications. Transportation Planning and
Technology, 5(3):131–138.
Piccoli, B., Han, K., Friesz, T. L., Yao, T., and Tang, J.
(2015). Second-order models and traffic data from
mobile sensors. Transp. Res. Part C Emerg. Technol.,
52(Supplement C):32 – 56.
Piccoli, B. and Tosin, A. (2011). Vehicular Traffic: A
Review of Continuum Mathematical Models, pages
1748–1770. Springer New York, New York, NY.
Pipes, L. A. (1953). An Operational Analysis of Traffic
Dynamics. J. Appl. Phys., 24:274–281.
Richards, P. I. (1956). Shock Waves on the Highway. Oper.
Res., 4(1):42–51.
Sakai, S., Nishinari, K., and Iida, S. (2006). A new stochas-
tic cellular automaton model on traffic flow and its
jamming phase transition. J. Phys. A: Math. Gen.,
39:15327–15339.
Samaranayake, S., Glaser, S., Holstius, D., Monteil, J.,
Tracton, K., Seto, E., and Bayen, A. (2014). Real-
Time Estimation of Pollution Emissions and Disper-
sion from Highway Traffic. Comput.-Aided Civ. Inf.,
29(7):546–558.
Song, F., Shin, J. Y., Jusino-Atresino, R., and Gao, Y.
(2011). Relationships among the springtime ground–
level NO
x
, O
3
and NO
3
in the vicinity of highways in
the US East Coast. Atmos. Pollut. Res., 2(3):374–383.
Stern, R., Cui, S., Delle Monache, M. L., Bhadani, R.,
Bunting, M., Churchill, M., Hamilton, N., Haulcy,
R., Pohlmann, H., Wu, F., Piccoli, B., Seibold, B.,
Sprinkle, J., and Work, D. B. (2018). Dissipation
of stop-and-go waves via control of autonomous ve-
hicles: Field experiments. Transp. Res. Part C Emerg.
Technol., 89:205–221.
Stern, R. E., Chen, Y., Churchill, M., Wu, F.,
Delle Monache, M. L., Piccoli, B., Seibold, B., Sprin-
kle, J., and Work, D. B. (2019). Quantifying air qual-
ity benefits resulting from few autonomous vehicles
stabilizing traffic. Transp. Res. Part D, 67:361–365.
Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K.,
Nakayama, A., Nishinari, K., Tadaki, S., and Yukawa,
S. (2008). Traffic jams without bottlenecks – Exper-
imental evidence for the physical mechanism of the
formation of a jam. New J. Phys., 10:033001.
Talebpour, A. and Mahmassani, H. S. (2016). Influence
of connected and autonomous vehicles on traffic flow
stability and throughput. Transp. Res. Part C Emerg.
Technol., 71:143–163.
TRB Executive Committee (2011). Special Report 307:
Policy Options for Reducing Energy and Greenhouse
Gas Emissions from U.S. Transportation. Technical
report, Transportation Research Board of the National
Academies.
TRB Executive Committee (2013). Critical issues in trans-
portation 2013. Technical report, Transportation Re-
search Board of the National Academies.
Wang, M., Daamen, W., Hoogendoorn, S. P., and van Arem,
B. (2016). Cooperative car-following control: Dis-
tributed algorithm and impact on moving jam features.
IEEE Transactions on Intelligent Transportation Sys-
tems, 17(5):1459–1471.
Wang, T., Xue, L., Brimblecombe, P., Lam, Y., Li, L.,
and Zhang, L. (2017). Ozone pollution in China: A
review of concentrations, meteorological influences,
chemical precursors, and effects. Sci. Total Environ.,
575:1582–1596.
Work, D., Blandin, S., Tossavainen, O.-P., Piccoli, B., and
Bayen, A. (2010). A traffic model for velocity data
assimilation. Appl. Math. Res. Express., 2010(1):1–
35.
Zegeye, S., De Schutter, B., Hellendoorn, J., Breunesse, E.,
and Hegyi, A. (2013). Integrated macroscopic traffic
flow, emission, and fuel consumption model for con-
trol purposes. Transp. Res. Part C Emerg. Technol.,
31:158–171.
Zhang, H. M. (2002). A non-equilibrium traffic model de-
void of gas-like behavior. Transp. Res. B, 36:275–290.
Zhang, K. and Batterman, S. (2013). Air pollution and
health risks due to vehicle traffic. Sci. Total Environ.,
450-451(Supplement C):307 – 316.
VEHITS 2020 - 6th International Conference on Vehicle Technology and Intelligent Transport Systems
228