REFERENCES
Aguilera, R. P., Delgado, R., Dolz, D., and Ag
¨
uero, J. C.
(2014). Quadratic MPC with l
0
-input constraint. IFAC
Proceedings Volumes, 47(3):10888 – 10893.
Aguilera, R. P., Urrutia, G., Delgado, R. A., Dolz,
D., and Ag
¨
uero, J. C. (2017). Quadratic model
predictive control including input cardinality con-
straints. IEEE Transactions on Automatic Control,
62(6):3068–3075.
Amy, T., Kong, H., Auger, D., Offer, G., and Longo, S.
(2016). Regularized MPC for power management of
hybrid energy storage systems with applications in
electric vehicles. IFAC-PapersOnLine, 49(11):265 –
270.
Challapalli, N., Nagahara, M., and Vidyasagar, M. (2017).
Continuous hands-off control by clot norm minimiza-
tion. IFAC-PapersOnLine, 50(1):14454 – 14459. 20th
IFAC World Congress.
Cho, K.-j. and Cho, D.-w. (2018). Solar heat gain coeffi-
cient analysis of a slim-type double skin window sys-
tem: Using an experimental and a simulation method.
Energies, 11(1).
Cojocaru, E. G., Bravo, J. M., Vasallo, M. J., and Mar
´
ın, D.
(2020). A binary-regularization-based model predic-
tive control applied to generation scheduling in con-
centrating solar power plants. Optimal Control Appli-
cations and Methods, 41(1):215–238.
Ellis, M., Durand, H., and Christofides, P. D. (2014). A
tutorial review of economic model predictive control
methods. Journal of Process Control, 24(8):1156 –
1178.
Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regu-
larization of inverse problems, volume 375. Springer
Science & Business Media.
Gabsi, F., Hamelin, F., Pannequin, R., and Chaabane, M.
(2017). Energy efficiency of a multizone office build-
ing: MPC-based control and simscape modelling. In
2017 International Conference on Smart Cities and
Green ICT Systems (SMARTGREENS), pages 227–
234, Porto, Portugal. INSTICC.
Gabsi, F., Hamelin, F., and Sauer, N. (2018a). Building hy-
grothermal modeling by nodal method. In 2018 IEEE
PES Innovative Smart Grid Technologies Conference
Asia (ISGT), Singapore.
Gabsi, F., Hamelin, F., and Sauer, N. (2018b). Hygrother-
mal modelling and MPC-based control for energy and
comfort management in buildings. In 2018 Interna-
tional Conference on Smart Grid and Clean Energy
Technologies (ICSGCE), Kajang, Malaysia.
Gallieri, M. and Maciejowski, J. M. (2012). l
asso
MPC:
Smart regulation of over-actuated systems. In 2012
American Control Conference (ACC), pages 1217–
1222.
Gallieri, M. and Maciejowski, J. M. (2015). Model predic-
tive control with prioritised actuators. In 2015 Euro-
pean Control Conference (ECC), pages 533–538.
Godina, R., Rodrigues, E. M. G., Pouresmaeil, E., Matias,
J. C. O., and Catal
˜
ao, J. P. S. (2018). Model predic-
tive control home energy management and optimiza-
tion strategy with demand response. Applied Sciences,
8(3).
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The el-
ements of statistical learning: data mining, inference
and prediction. Springer, 2 edition.
McCartney, K. J. and Nicol, J. F. (2002). Developing an
adaptive control algorithm for europe. Energy and
Buildings, 34(6):623 – 635. Special Issue on Thermal
Comfort Standards.
Nagahara, M., Quevedo, D. E., and Østergaard, J. (2014).
Sparse packetized predictive control for networked
control over erasure channels. IEEE Transactions on
Automatic Control, 59(7):1899–1905.
Pakazad, S. K., Ohlsson, H., and Ljung, L. (2013). Sparse
control using sum-of-norms regularized model predic-
tive control. In 52nd IEEE Conference on Decision
and Control, pages 5758–5763.
Rao, C. V. (2018). Sparsity of linear discrete-time optimal
control problems with l
1
objectives. IEEE Transac-
tions on Automatic Control, 63(2):513–517.
Rawlings, J. B., Patel, N. R., Risbeck, M. J., Maravelias,
C. T., Wenzel, M. J., and Turney, R. D. (2018). Eco-
nomic MPC and real-time decision making with ap-
plication to large-scale HVAC energy systems. Com-
puters & Chemical Engineering, 114:89 – 98.
Rockett, P. and Hathway, E. A. (2017). Model-predictive
control for non-domestic buildings: a critical review
and prospects. Building Research & Information,
45(5):556–571.
Serale, G., Fiorentini, M., Capozzoli, A., Bernardini, D.,
and Bemporad, A. (2018). Model predictive con-
trol (MPC) for enhancing building and HVAC system
energy efficiency: Problem formulation, applications
and opportunities. Energies, 11(3).
Tibshirani, R. (1994). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society,
Series B, 58:267–288.
Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and
Knight, K. (2005). Sparsity and smoothness via the
fused lasso. Journal of the Royal Statistical Society.
Series B (Statistical Methodology), 67(1):91–108.
W
¨
achter, A. and Biegler, L. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106:25–57.
Zhuang, J., Chen, Y., and Chen, X. (2018). A new simpli-
fied modeling method for model predictive control in
a medium-sized commercial building: A case study.
Building and Environment, 127:1 – 12.
Zong, Y., B
¨
oning, G. M., Santos, R. M., You, S., Hu, J.,
and Han, X. (2017). Challenges of implementing eco-
nomic model predictive control strategy for buildings
interacting with smart energy systems. Applied Ther-
mal Engineering, 114:1476 – 1486.
SMARTGREENS 2020 - 9th International Conference on Smart Cities and Green ICT Systems
148