Batista, G., Prati, R., and Monard, M.-C. (2004). A study of
the behavior of several methods for balancing machine
learning training data. SIGKDD Explorations, 6:20–
29.
Catolino, G., Palomba, F., Lucia, A. D., Ferrucci, F., and
Zaidman, A. (2018). Enhancing change prediction
models using developer-related factors. Journal of
Systems and Software, 143:14 – 28.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). Smote: Synthetic minority over-
sampling technique. Journal of Artificial Intelligence
Research, 16:321–357.
Chidamber, S. and Kemerer, C. (1994). A metrics suite for
object oriented design. IEEE Transaction on Software
Engineering, 20(6).
Cho, K., van Merri
¨
enboer, B., Gulcehre, C., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase
representations using rnn encoder-decoder for statisti-
cal machine translation.
Choudhary, A., Godara, D., and Singh, R. K. (2018). Pre-
dicting change prone classes in open source software.
Int. J. Inf. Retr. Res., 8(4):1–23.
Elish, M. O. and Al-Rahman Al-Khiaty, M. (2013). A
suite of metrics for quantifying historical changes to
predict future change-prone classes in object-oriented
software. Journal of Software: Evolution and Process,
25(5):407–437.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning. In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 1322–1328.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9:1735–80.
James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013).
An Introduction to Statistical Learning with Applica-
tions in R. Springer.
Khomh, F., Penta, M. D., and Gueheneuc, Y. (2009). An
exploratory study of the impact of code smells on soft-
ware change-proneness. In 2009 16th Working Con-
ference on Reverse Engineering, pages 75–84.
Koru, A. and Liu, H. (2007). Identifying and characterizing
change-prone classes in two large-scale open-source
products. Journal of Systems and Software, 80:63–73.
Liu, H., Shah, S., and Jiang, W. (2004). On-line outlier
detection and data cleaning. Computers & Chemical
Engineering, 28(9):1635 – 1647.
Lu, H., Zhou, Y., Xu, B., Leung, H., and Chen, L.
(2012). The ability of object-oriented metrics to pre-
dict change-proneness: a meta-analysis. Empirical
Software Engineering, 17(3).
Malhotra, R. and Khanna, M. (2013). Investigation of rela-
tionship between object-oriented metrics and change
proneness. International Journal of Machine Learn-
ing and Cybernetics, 4(4):273–286.
Malhotra, R. and Khanna, M. (2017). An empirical study
for software change prediction using imbalanced data.
Empirical Software Engineering, 22.
McCabe, T. J. (1976). A complexity measure. IEEE Trans-
action on Software Engineering.
Melo, C. S., da Cruz, M. M. L., Martins, A. D. F., Matos,
T., da Silva Monteiro Filho, J. M., and de Cas-
tro Machado, J. (2019). A practical guide to support
change-proneness prediction. In Proceedings of the
21st International Conference on Enterprise Informa-
tion Systems - Volume 2: ICEIS,, pages 269–276. IN-
STICC, SciTePress.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E., and Louppe, G. (2012). Scikit-learn: Machine
learning in python. Journal of Machine Learning Re-
search, 12.
Posnett, D., Bird, C., and D
´
evanbu, P. (2011). An em-
pirical study on the influence of pattern roles on
change-proneness. Empirical Software Engineering,
16(3):396–423.
Prati, R. C., Batista, G. E. A. P. A., and Monard, M. C.
(2009). Data mining with imbalanced class distribu-
tions: concepts and methods. In IICAI.
Tomek, I. (1976). Two modifications of cnn. IEEE Trans.
Systems, Man and Cybernetics, 6:769–772.
Wilson, D. L. (1972). Asymptotic properties of nearest
neighbor rules using edited data. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-2(3):408–
421.
Yan, M., Zhang, X., Liu, C., Xu, L., Yang, M., and Yang,
D. (2017). Automated change-prone class prediction
on unlabeled dataset using unsupervised method. In-
formation and Software Technology, 92:1 – 16.
Zhou, Y., Leung, H., and Xu, B. (2009). Examining the po-
tentially confounding effect of class size on the asso-
ciations between object-oriented metrics and change-
proneness. IEEE Transactions on Software Engineer-
ing, 35(5):607–623.
ICEIS 2020 - 22nd International Conference on Enterprise Information Systems
132