for detection of Autism Spectrum Disorder using
fMRI data , arXiv preprint arXiv:1904.07577
G. Chanel, et al., 2016, Classification of autistic
individuals and controls using cross-task
characterization of fMRI activity. NeuroImage:
Clinical, vol.10, pp. 78-88.
G Litjens, T Kooi, BE Bejnordi, AAA Setio, F Ciompi, M
Ghafoorian, 2017, A survey on deep learning in
medical image analysis, Medical image analysis, vol,
42, pp.60-88
H. Chen, X. Duan, F. Liu, F. Lu, X. Ma, Y. Zhang, L. Q.
Uddin, and H. Chen, 2016, Multivariate classification
of autism spectrum disorder using frequency-specific
resting-state functional connectivity—a multicenter
study, Progress in Neuro-Psychopharmacology and
Biological Psychiatry, vol. 64, pp. 1–9.
H. Li, N. Parikh and L. He. , 2018, A Novel Transfer
Learning Approach to Enhance Deep Neural Network
Classification of Brain Functional Connectomes.
Front. Neurosci. vol.12, pp.491.
Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Image-
net classification with deep convolutional neural
networks, in: Advances in neural information
processing systems, pp. 1097–1105.
Makhzani, Alireza and Frey, Brendan. 2013, k-sparse
autoencoders. CoRR, abs/1312.5663.
M. Khosla, K. Jamison, A. Kuceyeski and M. Sabuncu.,
2018, 3D Convolutional Neural Networks for
Classification of Functional Connectomes, arXiv:
1806.04209
MN. Parikh, H. Li and L. He. 2019, Enhancing Diagnosis
of Autism With Optimized Machine Learning Models
and Personal Characteristic Data. Frontiers in Human
Neuroscience. vol.13, pp.1-5.
M. Plitt, KA. Barnes and A. Martin., 2015, Functional
connectivity classification of autism identifies highly
predictive brain features but falls short of biomarker
standards. NeuroImage: Clinical, vol.9, pp. 359-366.
Najafabadi M.M., Villanustre F., Khoshgoftaar T.M.,
Seliya N., Wald R., and Muharemagic E., 2015. Deep
learning applications and challenges in big data
analytics. Journal of Big Data, vol. 2, no. 1, pp. 1-21.
Ravì D., et al., 2017. Deep learning for health informatics.
IEEE Journal of Biomedical and Health Informatics,
vol. 21, pp. 4-21.
SE. Schipul, DL. Williams, TA. Keller, NJ. Minshew &
MA.Just, 2012. Distinctive Neural Processes during
Learning in Autism, Cereb Cortex. vol, 22(4), pp.937.
Shin, H.-C., Orton, M. R., Collins, D. J., Doran, S. J., and
Leach, M. O. 2013. Stacked autoencoders for
unsupervised feature learning and multiple organ
detection in a pilot study using 4D patient data.
Pattern Anal.Mach. Intell. IEEE Trans. vol.35,
pp.1930–1943.
XA. Bi, Y. Wang, Q. Shu, Q. Sun, and Q. Xu. , 2018,
Classification of Autism Spectrum Disorder Using
Random Support Vector Machine Cluster. Frontiers in
Genetics. vol.9.
XA. Bi, Y. Liu, Q. Jiang, Q. Shu, Q. Sun and J Dai., 2018,
The Diagnosis of Autism Spectrum Disorder Based on
the Random Neural Network Cluster. Frontiers in
Human Neuroscience, vol.12, pp. 257.
Xi. Li, N. Dvornek, et al., 2018, 2-Channel Convolutional
3d Deep Neural Network (2CC3D) For fMRI
Analysis: ASD Classification and Feature Learning.
IEEE 15th International Symposium on Biomedical
Imaging (ISBI): Washington, D.C., USA.
Xi. Li, N. Dvorneky, J. Zhuang, P. Ventolaz and J.
Duncan. 2018, Brain Biomarker Interpretation in ASD
Using Deep Learning and fMRI. Int. Conference on
Medical Image Computing and Computer-Assisted
Intervention, MICCAI, pp. 206-214,.
X. Guo, KC. Dominick, AA. Minai, H. Li, CE. and LJ. Lu,
2017, Diagnosing Autism Spectrum Disorder from
Brain Resting-State Functional Connectivity Patterns
Using a Deep Neural Network with a Novel Feature
Selection Method, Front. Neurosci. vol.11, pp 460.
Y. Behzadi, K. Restom K, J. Liau, TT. Liu. , 2007, A
component based noise correction method (CompCor)
for BOLD and perfusion based fMRI. NeuroImage,
vol.37 (1), pp. 90- 101.