Barbosa, F. S., Duberg, D., Jensfelt, P., & Tumova, J.
(2019). Guiding Autonomous Exploration With Signal
Temporal Logic. IEEE Robotics and Automation
Letters, 4(4), 3332–3339. https://doi.org/
10.1109/lra.2019.2926669
Bayram, H., & Bozma, H. I. (2015). Coalition formation
games for dynamic multirobot tasks. International
Journal of Robotics Research, 35(5), 514–527.
https://doi.org/10.1177/0278364915595707
Cui, R., Guo, J., & Gao, B. (2013). Game theory-based
negotiation for multiple robots task allocation.
Robotica, 31(6), 923–934. https://doi.org/10.1017/
S0263574713000192
Dukeman, A., & Adams, J. A. (2017). Hybrid mission
planning with coalition formation. Autonomous Agents
and Multi-Agent Systems, 31(6), 1424–1466.
https://doi.org/10.1007/s10458-017-9367-7
Ferrer, E. C. (2019). The blockchain: A new framework for
robotic swarm systems. Advances in Intelligent Systems
and Computing, 881, 1037–1058. https://doi.org/
10.1007/978-3-030-02683-7_77
Gariepy, R., Mukherjee, P., Bovbel, P., & Ash, D. (2019).
GitHub - husky/husky: Common packages for the
Clearpath Husky. Retrieved January 6, 2020, from
https://github.com/husky/husky
Guerrero, J., Oliver, G., & Valero, O. (2017). Multi-Robot
Coalitions Formation with Deadlines: Complexity
Analysis and Solutions. PLOS ONE, 12(1), 1–26.
https://doi.org/10.1371/journal.pone.0170659
Hartanto, R., & Eich, M. (2014). Reliable, cloud-based
communication for multi-robot systems. 2014 IEEE
International Conference on Technologies for Practical
Robot Applications (TePRA), 1–8. https://doi.org/
10.1109/TePRA.2014.6869142
IEEE Robotics and Automation Society. (2015). IEEE
Standard Ontologies for Robotics and Automation.
https://doi.org/10.1109/IEEESTD.2015.7084073
Ivanov, D. (2019). Decentralized planning of intelligent
mobile robot’s behavior in a group with limited
communications. In Advances in Intelligent Systems
and Computing (Vol. 875). https://doi.org/
10.1007/978-3-030-01821-4_44
Klusch, M., & Gerber, A. (2002). Dynamic coalition
formation among rational agents. IEEE Intelligent
Systems, 17(3), 42–47. https://doi.org/10.1109/
MIS.2002.1005630
Koenig, N., & Howard, A. (2004). Design and use
paradigms for Gazebo, an open-source multi-robot
simulator. 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 3, 2149–2154.
https://doi.org/10.1109/iros.2004.1389727
Koes, M., Nourbakhsh, I., & Sycara, K. (2005).
Heterogeneous multirobot coordination with spatial and
temporal constraints. AAAI Workshop - Technical
Report,
WS-05-06, 9–16.
Liang, X., & Xiao, Y. (2010). Studying bio-Inspired
coalition formation of robots for detecting intrusions
using game theory. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 40(3),
683–693. https://doi.org/10.1109/
TSMCB.2009.2034976
Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., &
Von Stryk, O. (2012). Comprehensive simulation of
quadrotor UAVs using ROS and Gazebo. Lecture Notes
in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7628 LNAI, 400–411. https://doi.org/
10.1007/978-3-642-34327-8_36
Meyer, J., Sendobry, A., Kohlbrecher, S., Klingauf, U., &
Von Stryk, O. (2018). GitHub - tu-darmstadt-ros-
pkg/hector_quadrotor: hector_quadrotor contains
packages related to modeling, control and simulation of
quadrotor UAV systems. Retrieved January 5, 2020,
from https://github.com/tu-darmstadt-ros-pkg/
hector_quadrotor
Qian, B., & Cheng, H. H. (2018). Bio-Inspired Coalition
Formation Algorithms for Multirobot Systems. Journal
of Computing and Information Science in Engineering,
18(2), 1–8. https://doi.org/10.1115/1.4039638
Shabanov, V., & Ivanov, D. (2019). Organization of
information exchange in coalitions of intelligent mobile
robots. 2019 International Conference on Industrial
Engineering, Applications and Manufacturing,
ICIEAM 2019, 1–5. https://doi.org/10.1109/
ICIEAM.2019.8743043
Smirnov, A., Kashevnik, A., & Ponomarev, A. (2015).
Multi-level self-organization in cyber-physical-social
systems: Smart home cleaning scenario. Procedia
CIRP, 30, 329–334. https://doi.org/10.1016/
j.procir.2015.02.089
Smirnov, A., Kashevnik, A., Teslya, N., Mikhailov, S., &
Shabaev, A. (2015). Smart-M3-based robots self-
organization in pick-and-place system. 2015 17th
Conference of Open Innovations Association (FRUCT),
2015-June(June), 210–215. https://doi.org/10.1109/
FRUCT.2015.7117994
Smirnov, A., Sheremetov, L., & Teslya, N. (2019). Fuzzy
cooperative games usage in smart contracts for dynamic
robot coalition formation: Approach and use case
description. ICEIS 2019 - Proceedings of the 21st
International Conference on Enterprise Information
Systems, 1, 349–358. https://doi.org/10.5220/
0007763003610370
Stanford Artificial Intelligence Laboratory et.al. (2018).
ROS.org | Powering the world’s robots. Retrieved
January 5, 2020, from https://www.ros.org/
Suárez-Figueroa, M. C. (2012). Ontology engineering in a
networked world. Springer.
Tosello, E., Fan, Z., Castro, A. G., & Pagello, E. (2017).
Cloud-Based Task Planning for Smart Robots. In
Intelligent Autonomous Systems 14, Advances in
Intelligent Systems and Computing (Vol. 531, pp. 285–
300). https://doi.org/10.1007/978-3-319-48036-7_21
Verma, D., Desai, N., Preece, A., & Taylor, I. (2017). A
block chain based architecture for asset management in
coalition operations. In T. Pham & M. A. Kolodny
(Eds.), Proc. SPIE 10190, Ground/Air Multisensor
Interoperability, Integration, and Networking for