Fard, A. M., Mesbah, A. (2014b). saltlab/Testilizer.
Retrieved October 27, 2019 from https://github.com/
saltlab/Testilizer
Garousi, V., Felderer, M., & Mäntylä, M. V. (2016). The
need for multivocal literature reviews in software
engineering: complementing systematic literature
reviews with grey literature. EASE 2016: 26:1 – 26:6
Garousi, V., & Elberzhager, F. (2017). Test Automation:
Not Just for Test Execution. IEEE Software 34(2), 90-
96.
Gu, T., Cao, C., Liu, T., Sun, C., Deng, J., Ma, X., & Lü, J.
(2017). AIMDROID: Activity-insulated multi-level
automated testing for android applications. ICSME
2017, 103–114.
Hewett, R., & Kijsanayothin, P. (2009). Automated test
order generation for software component integration
testing. ASE 2009 , 211–220.
Hillah, L. M., Maesano, A.-P., Maesano, L., De Rosa, F.,
Kordon, F., & Wuillemin, P.-H. (2016). Service
functional testing automation with intelligent
scheduling and planning. SAC 2016, 1605–1610.
Hocke, R., n.d. SikuliX by RaiMan. Retrieved October 27,
2019, from http://sikulix.com/
Hourani, H., Hammad, A., & Lafi, M. (2019). The Impact
of Artificial Intelligence on Software Testing. JEEIT
2019, 565–570.
Hu, G., Zhu, L., & Yang, J. (2018). AppFlow: using
machine learning to synthesize robust, reusable UI
tests. ESEC/SIGSOFT FSE 2018, 269–282.
Institute of Computer Software of Nanjing University.
(2017). AimDroid: Activity-Insulated Multi-level
Automated Testing for Android Applications. Retrieved
October 27, 2019, from https://icsnju.github.io/
AimDroid-ICSME-2017/
Irfan, M. N., Oriat, C., & Groz, R. (2010). Angluin style
finite state machine inference with nonoptimal
counterexamples. MIIT 2010, 11-19.
Jin, H., Wang, Y., Chen, N., Gou, Z., & Wang, S. (2008).
Artificial Neural Network for Automatic Test Oracles
Generation. CSSE (2) 2008, 727–730.
King, T. M., Santiago, D., Phillips, J., & Clarke, P. J.
(2018). Towards a Bayesian Network Model for
Predicting Flaky Automated Tests. QRS Companion
2018, 100–107.
Kitchenham, B., & Charters, S. (2007). Guidelines for
performing Systematic Literature Reviews in Software
Engineering. EBSE-2007-01.
Last, M., Kandel, A., Bunke, H. (2004). Artificial
Intelligence Methods in Software Testing Series in
Machine Perception and Artificial Intelligence, Volume
56, 2004. World Scientific Publishing Co.
Li, H., & Lam, C. P. (2005). An ant colony optimization
approach to test sequence generation for state-based
software testing. QSIC 2005, 255–262.
Li, L., Wang, D., Shen, X., & Yang, M. (2009). A method
for combinatorial explosion avoidance of AI planner
and the application on test case generation.
CiSE 2009,
1–4.
Li, X., Wang, T., Wang, F., & Wang, M. (2011). A novel
model for automatic test data generation based on
predicate slice. AIMSEC 2011, 1803–1805.
Liu, P., Zhang, X., Pistoia, M., Zheng, Y., Marques, M., &
Zeng, L. (2017). Automatic Text Input Generation for
Mobile Testing. ICSE 2017, 643–653.
Lu, Y., Yan, D., Nie, S., & Wang, C. (2008). Development
of an Improved GUI Automation Test System Based on
Event-Flow Graph. CASE (2) 2008, 712–715.
Méndez-Porras, A., Nieto Hidalgo, M., García-Chamizo, J.
M., Jenkins, M., & Porras, A. M. (2015). A top-down
design approach for an automated testing framework.
UCAml 2015, 37–49.
Moghadam, M. H. (2019). Machine Learning-assisted
Performance Testing. ESEC/SIGSOFT FSE 2019,
1187–1189.
MIN Test Framework. (2012). MIN Test Framework.
Retrieved October 27, 2019, from http://min.
sourceforge.net/.
Pan, M., Xu, T., Pei, Y., Li, Z., Zhang, T., & Li, X. (2019).
GUI-guided Repair of Mobile Test Scripts. ICSE
(Companion Volume) 2019, 326–327.
Papadopoulos, P., & Walkinshaw, N. (2015). Black-box
test generation from inferred models. RAISE@ICSE
2015, 19–24.
Paradkar, A. M., Sinha, A., Williams, C., Johnson, R. D.,
Outterson, S., Shriver, C., & Liang, C. (2007).
Automated functional conformance test generation for
semantic web services. ICWS 2007, 110–117.
Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M.
V. (2012). Benefits and limitations of automated
software testing: Systematic literature review and
practitioner survey. AST 2012, 26-42
Rosenfeld, A., Kardashov, O., & Zang, O. (2018).
Automation of Android Applications Functional
Testing Using Machine Learning Activities
Classification. MOBILESoft@ICSE 2018, 122–132.
Sant, J., Souter, A., & Greenwald, L. (2005). An
exploration of statistical models for automated test case
generation. ACM SIGSOFT Software Engineering
Notes 30(4), 1–7.
Santiago, D., Clarke, P. J., Alt, P., & King, T. M. (2018).
Abstract flow learning for web application test
generation. A-TEST@ESEC/SIGSOFT FSE 2018, 49–
55.
Shahamiri, S. R., Kadir, W. M. N. W., Ibrahim, S., &
Hashim, S. Z. M. (2011). An automated framework for
software test oracle. Inf. Softwa. Technol., 53(7), 774–
788.
Sharifipour, H., Shakeri, M., & Haghighi, H. (2018).
Structural test data generation using a memetic ant
colony optimization based on evolution strategies.
Swarm Evol. Comput. 40, 76–91.
Shekhar, S., Murphy-Hill, E., & Oliviero, R., 2016. ICSE-
2011-AutoBlackTest. Retrieved October 27, 2019, from
https://github.com/SoftwareEngineeringToolDemos/I
CSE-2011-AutoBlackTest.
Shen, X., Wang, Q., Wang, P., & Zhou, B. (2009).
Automatic generation of test case based on GATS
algorithm. GrC 2009, 496–500.