Sistemas. Available at https://bit.ly/2t6WvjG. Ac-
cessed on August 14, 2019.
Brasil (2019). Tabnet win32 3.0: CNES - Recursos
F
´
ısicos - Equipamentos - Minas Gerais. Available
at http://tabnet.datasus.gov.br/cgi/deftohtm.exe?cnes/
cnv/equipoMG.def. Accessed on September 20, 2019.
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre,
L. A., and Jemal, A. (2018). Global cancer statistics
2018: Globocan estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA: a can-
cer journal for clinicians, 68(6):394–424.
Church, R. and ReVelle, C. (1974). The maximal cov-
ering location problem. Papers in regional science,
32(1):101–118.
Corr
ˆ
ea, V. H. V., Lima, B. J. C., Silva-e Souza, P. H., Penna,
P. H. V., and Souza, M. J. F. (2018). Localizac¸
˜
ao de
mam
´
ografos: um estudo de caso na rede p
´
ublica de
sa
´
ude. In Anais do L Simp
´
osio Brasileiro de Pesquisa
Operacional, Rio de Janeiro, Brasil. SOBRAPO.
Daskin, M. S. and Dean, L. K. (2005). Location of health
care facilities. In Brandeau, M. L., Sainfort, F.,
and Pierskalla, W. P., editors, Operations research
and health care, volume 70, pages 43–76. Springer,
Boston, MA.
Davari, S., Kilic, K., and Naderi, S. (2016). A heuris-
tic approach to solve the preventive health care prob-
lem with budget and congestion constraints. Applied
Mathematics and Computation, 276:442–453.
Dogan, K., Karatas, M., and Yakici, E. (2019). A
model for locating preventive health care facilities.
Central European Journal of Operations Research,
pages 1–31. Available at https://doi.org/10.1007/
s10100-019-00621-4.
Dowsland, K. A. (1993). Some experiments with simulated
annealing techniques for packing problems. European
Journal of Operational Research, 68(3):389–399.
Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York.
Gomes J
´
unior, A. d. C., Souza, M. J. F., and Martins, A. X.
(2005). Simulated annealing aplicado
`
a resoluc¸
˜
ao do
problema de roteamento de ve
´
ıculos com janela de
tempo. TRANSPORTES, 13(2):5–20.
Gu, W., Wang, X., and McGregor, S. E. (2010). Optimiza-
tion of preventive health care facility locations. Inter-
national journal of health geographics, 9(1):17.
Haeser, G. and Ruggiero, M. G. (2008). Aspectos te
´
oricos
de simulated annealing e um algoritmo duas fases em
otimizac¸
˜
ao global. Trends in Applied and Computa-
tional Mathematics, 9(3):395–404.
Hakimi, S. L. (1964). Optimum locations of switching cen-
ters and the absolute centers and medians of a graph.
Operations research, 12(3):450–459.
Huff, D. L. (1964). Defining and estimating a trading area.
Journal of marketing, 28(3):34–38.
INCA (2015). Revis
˜
ao do par
ˆ
ametro para c
´
alculo da capaci-
dade de produc¸
˜
ao de um mam
´
ografo simples. Avail-
able at https://bit.ly/2ZrgvJU. Accessed on August 14,
2019.
INCA (2017). Atlas on-line de mortalidade. Available
at https://mortalidade.inca.gov.br/MortalidadeWeb/
pages/Modelo01/consultar.xhtml. Accessed on
September 30, 2019.
Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983).
Optimization by simulated annealing. science,
220(4598):671–680.
Miranda, S. M. R. and Patrocinio, A. C. (2018).
Distribuic¸
˜
ao de mam
´
ografos por macrorregi
˜
ao do
Brasil. In Anais do V Congresso Brasileiro de Eletro-
miografia e Cinesiologia e X Simp
´
osio de Engen-
haria Biom
´
edica, pages 433–436, Uberl
ˆ
andia. Even3.
Available at https://doi.org/10.29327/cobecseb.78881.
Sathler, T. M., Conceic¸
˜
ao, S. V., Almeida, J. F., Pinto, L. R.,
de Campos, F. C. C., and Miranda J
´
unior, G. (2017).
Problema de localizac¸
˜
ao e alocac¸
˜
ao de centros de es-
pecialidades m
´
edias no estado de minas gerais. In
Anais do XLIX Simp
´
osio Brasileiro de Pesquisa Op-
eracional – XLIX SBPO, pages 2988–2999, Blume-
nau, Brasil. SOBRAPO.
Silva, M. T. A. d., Silva J
´
unior, V. B. d., Mangueira, J.
d. O., Gurgel Junior, G. D., and Leal, E. M. M.
(2018). Distribution of mammograms and mam-
mography offering in relation to the parametric
care of the Public Health Care System in Pernam-
buco. Revista Brasileira de Sa
´
ude Materno Infan-
til, 18(3):609 – 618. Available at http://dx.doi.org/10.
1590/1806-93042018000300009.
Souza, M. J. F., Penna, P. H. V., Stilpen, M., Rosa,
P. M., Monteiro, J. C., and Lisboa, M. R. (2019).
Localizac¸
˜
ao de mam
´
ografos: formulac¸
˜
oes e es-
tudo preliminar de caso de Rond
ˆ
onia. In LI
Simp
´
osio Brasileiro de Pesquisa Operacional, vol-
ume 2, Limeira. Galo
´
a. Available at https://bit.ly/
39sozia.
Toregas, C., Swain, R., ReVelle, C., and Bergman, L.
(1971). The location of emergency service facilities.
Operations research, 19(6):1363–1373.
Verter, V. and Lapierre, S. D. (2002). Location of preventive
health care facilities. Annals of Operations Research,
110(1):123–132.
Weber, A. (1929). Theory of the Location of Industries.
University of Chicago Press.
Witten, M. and Parker, C. C. (2018). Screening mammog-
raphy recommendations and controversies. Surgical
Clinics of North America, 98(4):667–675.
Xavier, D. R., Oliveira, R. A. D. d., Matos, V. P. d., Vi-
acava, F., and Carvalho, C. d. C. (2016). Cobertura
de mamografias, alocac¸
˜
ao e uso de equipamentos nas
regi
˜
oes de sa
´
ude. Sa
´
ude em Debate, 40(110):20 – 35.
Zhang, Y., Berman, O., Marcotte, P., and Verter, V. (2010).
A bilevel model for preventive healthcare facility
network design with congestion. IIE Transactions,
42(12):865–880.
Zhang, Y., Berman, O., and Verter, V. (2009). Incorporating
congestion in preventive healthcare facility network
design. European Journal of Operational Research,
198(3):922–935.
Zhang, Y., Berman, O., and Verter, V. (2012). The impact of
client choice on preventive healthcare facility network
design. OR spectrum, 34(2):349–370.
A Mixed Linear Integer Programming Formulation and a Simulated Annealing Algorithm for the Mammography Unit Location Problem
439