tion. In 2017 IEEE 28th International Symposium on
Software Reliability Engineering (ISSRE), pages 351–
360. IEEE.
Buczak, A. L. and Guven, E. (2015). A survey of data min-
ing and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys &
Tutorials, 18(2):1153–1176.
Canetta, L., Cheikhrouhou, N., and Glardon, R. (2005). Ap-
plying two-stage SOM-based clustering approaches to
industrial data analysis. Production Planning & Con-
trol, 16(8):774–784.
Cui, Z., Chen, W., and Chen, Y. (2016). Multi-Scale Con-
volutional Neural Networks for Time Series Classifi-
cation.
D
´
ıaz, I., Dom
´
ınguez, M., Cuadrado, A. A., and Fuertes,
J. J. (2008). A new approach to exploratory analy-
sis of system dynamics using som. applications to in-
dustrial processes. Expert Systems with Applications,
34(4):2953 – 2965.
Farshchi, M., Schneider, J.-G., Weber, I., and Grundy,
J. (2018). Metric selection and anomaly detection
for cloud operations using log and metric correlation
analysis. Journal of Systems and Software, 137:531–
549.
Gulenko, A., Wallschlager, M., Schmidt, F., Kao, O., and
Liu, F. (2016a). Evaluating machine learning algo-
rithms for anomaly detection in clouds. In Proceed-
ings - 2016 IEEE International Conference on Big
Data, Big Data 2016, pages 2716–2721. IEEE.
Gulenko, A., Wallschl
¨
ager, M., Schmidt, F., Kao, O., and
Liu, F. (2016b). A system architecture for real-time
anomaly detection in large-scale nfv systems. Proce-
dia Computer Science, 94:491–496. The 11th Interna-
tional Conference on Future Networks and Commu-
nications (FNC 2016) / The 13th International Con-
ference on Mobile Systems and Pervasive Computing
(MobiSPC 2016) / Affiliated Workshops.
Gupta, L., Samaka, M., Jain, R., Erbad, A., Bhamare, D.,
and Chan, H. A. (2017). Fault and performance man-
agement in multi-cloud based NFV using shallow and
deep predictive structures. Journal of Reliable Intelli-
gent Environments, 3(4):221–231.
Haykin, S. (2007). Neural Networks: A Comprehensive
Foundation (3rd Edition). Prentice-Hall, Inc., USA.
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L.,
and Muller, P. A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4):917–963.
Kashiparekh, K., Narwariya, J., Malhotra, P., Vig, L., and
Shroff, G. (2019). ConvTimeNet: A Pre-trained Deep
Convolutional Neural Network for Time Series Clas-
sification.
Le, L., Sinh, D., Lin, B. P., and Tung, L. (2018). Apply-
ing big data, machine learning, and sdn/nfv to 5g traf-
fic clustering, forecasting, and management. In 2018
4th IEEE Conference on Network Softwarization and
Workshops (NetSoft), pages 168–176.
Malhotra, P., TV, V., Vig, L., Agarwal, P., and Shroff, G.
(2017). TimeNet: Pre-trained deep recurrent neural
network for time series classification.
Malini, N. and Pushpa, M. (2017). Analysis on credit card
fraud identification techniques based on knn and out-
lier detection. In 2017 Third International Confer-
ence on Advances in Electrical, Electronics, Informa-
tion, Communication and Bio-Informatics (AEEICB),
pages 255–258.
Miyazawa, M., Hayashi, M., and Stadler, R. (2015).
vnmf: Distributed fault detection using clustering ap-
proach for network function virtualization. In 2015
IFIP/IEEE International Symposium on Integrated
Network Management (IM), pages 640–645.
NFV Industry Specif. Group (2012). Network Functions
Virtualisation. Introductory White Paper.
Niwa, T., Miyazawa, M., Hayashi, M., and Stadler, R.
(2015). Universal fault detection for nfv using som-
based clustering. In 2015 17th Asia-Pacific Network
Operations and Management Symposium (APNOMS),
pages 315–320.
Ostberg, P. O., Byrne, J., Casari, P., Eardley, P., Anta, A. F.,
Forsman, J., Kennedy, J., Le Duc, T., Marino, M. N.,
Loomba, R., Pena, M. A. L., Veiga, J. L., Lynn, T.,
Mancuso, V., Svorobej, S., Torneus, A., Wesner, S.,
Willis, P., and Domaschka, J. (2017). Reliable capac-
ity provisioning for distributed cloud/edge/fog com-
puting applications. In EuCNC 2017 - European Con-
ference on Networks and Communications, pages 1–6.
IEEE.
Pitakrat, T., Okanovi
´
c, D., van Hoorn, A., and Grunske, L.
(2018). Hora: Architecture-aware online failure pre-
diction. Journal of Systems and Software, 137:669–
685.
Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics,
20:53 – 65.
Samrin, R. and Vasumathi, D. (2017). Review on anomaly
based network intrusion detection system. In 2017
International Conference on Electrical, Electronics,
Communication, Computer, and Optimization Tech-
niques (ICEECCOT), pages 141–147.
Sauvanaud, C., Ka
ˆ
aniche, M., Kanoun, K., Lazri, K., and
Da Silva Silvestre, G. (2018). Anomaly detection and
diagnosis for cloud services: Practical experiments
and lessons learned. Journal of Systems and Software,
139:84–106.
Van den Berg, F. D., Kok, P., Yang, H., Aarnts, M., Meil-
land, P., Kebe, T., Stolzenberg, M., Krix, D., Zhu,
W., Peyton, A., et al. (2018). Product uniformity
control-a research collaboration of european steel in-
dustries to non-destructive evaluation of microstruc-
ture and mechanical properties. In Electromagnetic
Non-Destructive Evaluation (XXI). 6 September 2017
through 8 September 2017, pages 120–129.
Wallschl
¨
ager, M., Gulenko, A., Schmidt, F., Kao, O., and
Liu, F. (2017). Automated Anomaly Detection in Vir-
tualized Services Using Deep Packet Inspection. In
Procedia Computer Science, volume 110, pages 510–
515. Elsevier.
Watanabe, Y., Otsuka, H., Sonoda, M., Kikuchi, S., and
Matsumoto, Y. (2012). Online failure prediction in
Behavioral Analysis for Virtualized Network Functions: A SOM-based Approach
159