While the FCD as major reference source for the
anomaly detection are just aggregated for each link, a
thorough data preprocessing can potentially help to
improve the precision even with a higher recall.
Influences from heavy traffic and weather could be
filtered out in a data preparation step.
The third and biggest open research topic is the
application of the map validation concept to other,
more complex map features. The speed limit as a map
attribute was already mentioned. While yield signs
are single events with a relatively low occurrence, the
speed limit is a map attribute available on every link
in the road network and subject to relatively high
change frequencies.
REFERENCES
Albrecht, M., & Holzäpfel, M. (2018). Vorausschauend
effizient fahren mit dem elektronischen Co-Piloten.
ATZextra, 23, 34-37.
Amersbach, C., & Winner, H. (2017). Functional
decomposition: An approach to reduce the approval
effort for highly automated driving. 8. Tagung
Fahrerassistenz.
Ammoun, S., Nashashibi, F., & Brageton, A. (2010).
Design of a new GIS for ADAS oriented applications.
2010 IEEE Intelligent Vehicles Symposium, (S. 712-
716).
Anwar, T., Liu, C., Vu, H. L., Islam, M. S., & Sellis, T.
(2018). Capturing the spatiotemporal evolution in road
traffic networks. IEEE Transactions on Knowledge and
Data Engineering, 30, 1426-1439.
Barbara, D., Wu, N., & Jajodia, S. (2001). Detecting novel
network intrusions using bayes estimators. Proceedings
of the 2001 SIAM International Conference on Data
Mining, (S. 1-17).
Biagioni, J., & Eriksson, J. (2012). Inferring road maps
from global positioning system traces: Survey and
comparative evaluation. Transportation research
record, 2291, 61-71.
Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly
detection: A survey. ACM computing surveys (CSUR),
41, 15.
De Fabritiis, C., Ragona, R., & Valenti, G. (2008). Traffic
estimation and prediction based on real time floating car
data. Intelligent Transportation Systems, 2008. ITSC
2008. 11th International IEEE Conference on, (S. 197-
203).
Dutta, H., Giannella, C., Borne, K., & Kargupta, H. (2007).
Distributed top-k outlier detection from astronomy
catalogs using the demac system. Proceedings of the
2007 SIAM International Conference on Data Mining,
(S. 473-478).
Eskin, E. (2000). Anomaly detection over noisy data using
learned probability distributions.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., & others.
(1996). A density-based algorithm for discovering
clusters in large spatial databases with noise. Kdd, 96,
S. 226-231.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep
learning. MIT press.
Guha, S., Rastogi, R., & Shim, K. (2000). ROCK: A robust
clustering algorithm for categorical attributes.
Information systems, 25, 345-366.
Guttormsson, S. E., Marks, R. J., El-Sharkawi, M. A., &
Kerszenbaum, I. (1999). Elliptical novelty grouping for
on-line short-turn detection of excited running rotors.
IEEE Transactions on Energy Conversion, 14, 16-22.
He, Z., Deng, S., Xu, X., & Huang, J. Z. (2006). A fast
greedy algorithm for outlier mining. Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
(S. 567-576).
Herrera, J. C., Work, D. B., Herring, R., Ban, X. J.,
Jacobson, Q., & Bayen, A. M. (2010). Evaluation of
traffic data obtained via GPS-enabled mobile phones:
The Mobile Century field experiment. Transportation
Research Part C: Emerging Technologies, 18
, 568-583.
Herring, R., Hofleitner, A., Abbeel, P., & Bayen, A. (2010).
Estimating arterial traffic conditions using sparse probe
data. Intelligent Transportation Systems (ITSC), 2010
13th International IEEE Conference on, (S. 929-936).
Hofleitner, A., Herring, R., Abbeel, P., & Bayen, A. (2012).
Learning the dynamics of arterial traffic from probe
data using a dynamic Bayesian network. IEEE
Transactions on Intelligent Transportation Systems, 13,
1679-1693.
Jomrich, F., Sharma, A., Rückelt, T., Burgstahler, D., &
Böhnstedt, D. (2017). Dynamic Map Update Protocol
for Highly Automated Driving Vehicles. VEHITS, (S.
68-78).
Keogh, E., Lonardi, S., & Ratanamahatana, C. A. (2004).
Towards parameter-free data mining. Proceedings of
the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining, (S. 206-215).
Kock, P., Weller, R., Ordys, A. W., & Collier, G. (2014).
Validation methods for digital road maps in predictive
control. IEEE Transactions on Intelligent
Transportation Systems, 16, 339-351.
Li, J., Qin, Q., Xie, C., & Zhao, Y. (2012). Integrated use
of spatial and semantic relationships for extracting road
networks from floating car data. International Journal
of Applied Earth Observation and Geoinformation, 19,
238-247.
Liebner, M., Jain, D., Schauseil, J., Pannen, D., &
Hackelöer, A. (2019). Crowdsourced HD Map Patches
Based on Road Model Inference and Graph-Based
SLAM. 2019 IEEE Intelligent Vehicles Symposium
(IV), (S. 1211-1218).
Lipkowitz, J. W., & Sokolov, V. (2017). Clusters of Driving
Behavior from Observational Smartphone Data. arXiv
preprint arXiv:1710.04502.
Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., &
Zhu, Y. (2012). Mining large-scale, sparse GPS traces
for map inference: comparison of approaches.
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
(S. 669-677).