D'uva, L., Rosskopf, C. M., Vergari, F. 2016. Multi‐
temporal digital photogrammetric analysis for
quantitative assessment of soil erosion rates in the
Landola catchment of the Upper Orcia Valley
(Tuscany, Italy). Land Degradation & Development,
27(4), 1075-1092.
Baker A, Smart PL. 1995. Recent flowstone growth rates:
Field measurements in comparison to theoretical
predictions. Chemical Geology 122(1-4): 121-128.
Barilar, M., Todić, F., Krste, I. (2015). Korištenje
fotogrametrijskog materijala u izradi 3D modela i
fototeksture. Ekscentar, (18), 50-56.
Balletti, C., Beltrame, C., Costa, E., Guerra, F., Vernier, P.
(2015). Underwater Photogrammetry and 3D
Reconstruction of Marble Cargos Shipwreck.
International Archives of the Photogrammetry, Remote
Sensing & Spatial Information Sciences.
Capezzuoli E, Gandin A, Pedley M. 2014. Decoding tufa
and travertine (fresh water carbonates) in the
sedimentary record: the state of the art. Sedimentology
61(1): 1-21.
Carthew KD, Taylor MP, Drysdale RN. 2002. Aquatic
insect larval constructions in tropical freshwater
limestone deposits (tufa): preservation of depositional
environments. General and Applied Entomology: the
Journal of the Entomological Society of New South
Wales 31: 35 – 41.
Clarke, T. A., Fryer, J. G. (1998). The development of
camera calibration methods and models. The
Photogrammetric Record, 16(91), 51-66.
Demott LM, Scholz CA, Junium CK. 2019. 8200‐year
growth history of a Lahontan‐age lacustrine tufa
deposit. Sedimentology 66: 2169–2190.
Drysdale, R., & Gillieson, D. (1997). Micro‐erosion meter
measurements of travertine deposition rates: a case
study from Louie Creek, Northwest Queensland,
Australia. Earth Surface Processes and Landforms: The
Journal of the British Geomorphological Group,
22(11), 1037-1051.
Doulamis, A., Soile, S., Doulamis, N., Chrisouli, C.,
Grammalidis, N., Dimitropoulos, K., ... Ioannidis, C.
2015. Selective 4D modelling framework for spatial-
temporal land information management system. In
Third International Conference on Remote Sensing and
Geoinformation of the Environment (RSCy2015) (Vol.
9535, p. 953506). International Society for Optics and
Photonics.
Eltner A, Kaiser A, Castillo C, Rock G, Neugirg F, Abellán
A. 2016. Image-based surface reconstruction in
geomorphometry–merits, limits and developments.
Earth Surface Dynamics 4(2): 359-389.
Ergun, B., & Baz, I. (2006). Design of an expert
measurement system for close-range photogrammetric
applications. Optical Engineering, 45(5), 053604.
Gajski D, Solter A, Gašparović M. 2016. Applications of
macro photogrammetry in archaeology. Proceedings of
the XXIII ISPRS Congress. Prague, Czech Republic.
Gradziński M. 2010. Factors controlling growth of modern
tufa: results of a field experiment. Geological Society,
London, Special Publications 336(1): 143-191.
Hoiberg, C. (2018). The Best Aperture for Landscape
Photography, retreived at https://petapixel.com/2018/
06/15/the-best-aperture-for-landscape-photography/
James, M.R., and Robson, S., 2012, Straightforward
reconstruction of 3D surfaces and topography with a
camera: accuracy and geoscience application: Journal
of Geophysical Research, v. 117, 17 p.,
Liu L. 2017. Factors Affecting Tufa Degradation in
Jiuzhaigou National Nature Reserve, Sichuan, China.
Water 9(9): 702.
Liu Z, Sun H, Li H, Wan N. 2011. δ13C, δ18O and
deposition rate of tufa in Xiangshui River, SW China:
implications for land-cover change caused by climate
and human impact during the late Holocene. Geological
Society, London, Special Publications 352(1): 85-96.
Marić, I., Šiljeg, A., Cukrov, N., Roland, V., Goreta, G.
(2019, June). 3D image based modelling of small tufa
samples using macro lens in digital very close range
photogrammetry. In 5th Jubilee International Scientific
Conference GEOBALCANICA 2019.
Marziali S, Dionisio G. 2017. Photogrammetry and macro
photography. The experience of the MUSINT II Project
in the 3D digitizing process of small size archaeological
artifacts. Studies in Digital Heritage 1(2): 298-309.
Micheletti, N., Chandler, J.H., and Lane, S.N., 2015b,
Structure from Motion (SfM) Photogrammetry: British
Society of Geomorphology, Geomorphological
Techniques, ch. 2, sec. 2.2, 12 p.
Mosbrucker, A. R., Major, J. J., Spicer, K. R., Pitlick, J.
(2017). Camera system considerations for geomorphic
applications of SfM photogrammetry. Earth Surface
Processes and Landforms, 42(6), 969-986.
Pasumansky, A. 2015. Agisoft Forum, Topic GCP errors,
Agisoft Technical Support, Available at:
https://www.agisoft.com/forum/index.php?topic=2687
.0, 9 March, 2020.
Pentecost A, Coletta P. 2007. The role of photosynthesis
and CO2 evasion in travertine formation: a quantitative
investigation at an important travertine-depositing hot
spring, Le Zitelle, Lazio, Italy. Journal of the
Geological Society 164(4): 843-853.
Pevalek, I. (1956). Slap Plive u Jajcu na samrti. Naše
starine III, 269-273.
Rahaman, H., Champion, E. 2019. To 3D or Not 3D:
Choosing a Photogrammetry Workflow for Cultural
Heritage Groups. Heritage, 2(3), 1835-1851.
Remondino, F., Fraser, C. (2006). Digital camera
calibration methods: considerations and comparisons.
International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 36(5), 266-
272.
Sanz-Ablanedo, E., Chandler, J. H., Rodríguez-Pérez, J. R.,
Ordóñez, C. 2018. Accuracy of unmanned aerial
vehicle (UAV) and SfM photogrammetry survey as a
function of the number and location of ground control
points used. Remote Sensing, 10(10), 1606.
Skarlatos, D., Menna, F., Nocerino, E., & Agrafiotis, P.
(2019). Precision Potential of Underwater Networks
for Archaeological Excavation Through Trilateration
and Photogrammetry. International Archives of the