Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(4), 743-761.
Felzenszwalb, P., Girshick, R., McAllester, D., &
Ramanan, D. (2010). Object detection with
discriminatively trained part based models. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 32(9), 1627-1645.
Felzenszwalb, P., McAllester, D., & Ramanan, D. (2008).
A discriminatively trained, multiscale, deformable part
model. IEEE Conference on Computer Vision and
Pattern Recognition.
Girshick, R. (2015). Fast R-CNN. Proceedings of the IEEE
International Conference on Computer Vision.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. IEEE Conference on
Computer Vision and Pattern Recognition.
Grauman, K., & Darrell, T. (2005). The pyramid match
kernel: discriminative classification with sets of image
features. Proceedings of the Tenth IEEE International
Conference on Computer Vision.
Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., &
Belongie, S. (2017). Feature pyramid networks for
object detection. arXiv:1612.03144v2
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C., Berg, A. (2016). SSD: single shot multibox
detector. Proceedings of the 14th European Conference
on Computer Vision.
Luo, P., Tian, Y., Wang, X., & Tang, X. (2014). Switchable
deep network for pedestrian detection. Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition.
Ortalda, A., Moujahid, A., Hina, M., Soukane, A. &
Ramdane-Cherif, A. (2018). Safe driving mechanism:
detection, recognition and avoidance of road obstacles.
Proceedings of the 10
th
International Joint Conference
on Knowledge Discovery, Knowledge Engineering and
Knowledge Management.
Ouyang, W., & Wang, X. (2012). A discriminative deep
model for pedestrian detection with occlusion handling.
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition.
Ouyang, W., & Wang, X. (2013). Joint deep learning for
pedestrian detection. Proceedings of the IEEE
International Conference on Computer Vision.
Rasmussen, C., Nasrollahi, K. & Moeslund, T. (2017). R-
FCN object detection ensemble based on object
resolution and image quality. Proceedings of the 9
th
International Joint Conference on Computational
Intelligence.
Redmon, J., Divvala, S., Girshick, R., & Farhadi. A. (2016).
You only look once: unified, real-time object detection.
Proceedings of the IEEE Conference on Computer
Vision and Pattern. Recognition.
Redmon, J., & Farhadi, A. (2018). YOLOv3: An
incremental improvement. arXiv:1804.02767v1
Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-
CNN: Towards real-time object detection with region
proposal networks. Advances in Neural Information
Processing Systems.
Schnürle, S., Pouly, M., vor der Brück, T., Navarini, A. &
Koller, T. (2017). On using support vector machines for
the detection and quantification of hand eczema.
Proceedings of the 9th International Conference on
Agents and Artificial Intelligence.
Sermanet, P., Kavukcuoglu, K., Pedestrian, S., & LeCun,
Y. (2013). Pedestrian detection with unsupervised
multi-stage feature learning. Proceedings of the IEEE
Conference on Computer Vision and Pattern.
Recognition.
Viola, P., & Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features, Proceedings of
the IEEE Conference on Computer Vision and Pattern.
Recognition.
Viola, P., Jones, M. J., & Snow, D. (2003). Detecting
pedestrians using patterns of motion and appearance.
Proceedings of the Ninth IEEE International
Conference on Computer Vision.
World Health Organization. (2013). More than 270 000
pedestrians killed on roads each year. Retrieved Oct.
2019 from https://www.who.int/mediacentre/news/
notes/2013/make_walking_safe_20130502/en/
Zhang, C. & Kim, J. (2018). Multi-scale spatial context
features using 3-d recurrent neural networks for
pedestrian detection. Proceedings of the 21
st
International Conference on Intelligent Transportation
Systems.
Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X. (2019). Object
detection with deep learning: a review. IEEE Trans. On
Neural Networks and Learning Systems, 30(11), 3212-
3232.