Kushida, C., Nichols, D., Jadrnicek, R., Miller, R.,
Walsh, J., and Griffin, K. (2012). Strategies for de-
identification and anonymization of electronic health
record data for use in multicenter research studies.
Medical care, 50 Suppl:S82–101.
Laney, D. (2001). 3D data management: Controlling data
volume, velocity, and variety. Technical report, META
Group, Garnter.
Li, M., Zang, W., Bai, K., Yu, M., and Liu, P. (2013).
Mycloud: Supporting user-configured privacy pro-
tection in cloud computing. In Proceedings of the
29th Annual Computer Security Applications Confer-
ence, ACSAC ’13, pages 59–68, New York, NY, USA.
ACM.
Li, N., Li, T., and Venkatasubramanian, S. (2007).
t-closeness: Privacy beyond k-anonymity and l-
diversity. In 2007 IEEE 23rd International Confer-
ence on Data Engineering, pages 106–115.
Liu, C., Yang, C., Zhang, X., and Chen, J. (2015). External
integrity verification for outsourced big data in cloud
and iot: A big picture. Future Generation Computer
Systems, 49:58 – 67.
Lu, R., Liang, X., Li, X., Lin, X., and Shen, X. (2012).
Eppa: An efficient and privacy-preserving aggrega-
tion scheme for secure smart grid communications.
IEEE Transactions on Parallel and Distributed Sys-
tems, 23(9):1621–1631.
Lu, R., Zhu, H., Liu, X., Liu, J. K., and Shao, J. (2014).
Toward efficient and privacy-preserving computing in
big data era. IEEE Network, 28(4):46–50.
Ma, M., Wang, P., and Chu, C. (2013). Data management
for internet of things: Challenges, approaches and op-
portunities. In 2013 IEEE International Conference
on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and So-
cial Computing, pages 1144–1151.
Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasub-
ramaniam, M. (2006). L-diversity: privacy beyond k-
anonymity. In 22nd International Conference on Data
Engineering (ICDE’06), pages 24–24.
Mukherjee, J., Datta, B., Banerjee, R., and Das, S.
(2015). Dwt difference modulation based novel
steganographic algorithm. In Jajodia, S. and Mazum-
dar, C., editors, Information systems security, Lecture
Notes in Computer Science, pages 573–582. Springer,
Cham and Heidelberg and New York and Dordrecht
and London.
Neves, P. C., Schmerl, B. R., C
´
amara, J., and Bernardino,
J. (2016). Big data in cloud computing: Features and
issues. In IoTBD.
Pacheco, L., Alchieri, E., and Solis, P. (2017). Architecture
for privacy in cloud of things. In Proceedings of the
19th International Conference on Enterprise Informa-
tion Systems - Volume 2: ICEIS,, pages 487–494. IN-
STICC, SciTePress.
Paillier, P. (1999). Public-key cryptosystems based on com-
posite degree residuosity classes. In Stern, J., editor,
Advances in Cryptology — EUROCRYPT ’99, pages
223–238, Berlin, Heidelberg. Springer Berlin Heidel-
berg.
Pires, R., Pasin, M., Felber, P., and Fetzer, C. (2016).
Secure content-based routing using intel software
guard extensions. In Proceedings of the 17th In-
ternational Middleware Conference, Middleware ’16,
pages 10:1–10:10, New York, NY, USA. ACM.
Prasser, F., Kohlmayer, F., and Kuhn, K. A. (2016). The
importance of context: Risk-based de-identification of
biomedical data. Methods of information in medicine,
55(04):347–355.
Prasser, F., Kohlmayer, F., Spengler, H., and A Kuhn, K.
(2017). A scalable and pragmatic method for the safe
sharing of high-quality health data. IEEE Journal of
Biomedical and Health Informatics, PP:1–1.
Sachdev, A. and Bhansali, M. (2013). Enhancing cloud
computing security using aes algorithm. International
Journal of Computer Applications, 67:19–23.
Samonas, S. and Coss, D. (2014). The cia strikes back:
Redefining confidentiality, integrity and availability in
security. Journal of Information System Security, Vol-
ume 10(3):21–45.
Solove, D. J. (2015). The meaning and value of privacy.
In Roessler, B. and Mokrosinska, D., editors, Social
Dimensions of Privacy, pages 71–82. Cambridge Uni-
versity Press, Cambridge.
Stergiou, C. and Psannis, K. E. (2017). Efficient and se-
cure big data delivery in cloud computing. Multimedia
Tools and Applications, 76(21):22803–22822.
Sweeney, L. (2002). k-anonymity: A model for protecting
privacy. International Journal of Uncertainty, Fuzzi-
ness and Knowledge-Based Systems, 10(05):557–570.
Sweeney, L., Yoo, J. S., Perovich, L., Boronow, K. E.,
Brown, P., and Brody, J. G. (2017). Re-identification
risks in hipaa safe harbor data: A study of data from
one environmental health study. Technology science,
2017.
Tomashchuk, O., van Landuyt, D., Pletea, D., Wuyts, K.,
and Joosen, W. (2019). A data utility-driven bench-
mark for de-identification methods. In Gritzalis, S.,
Weippl, E. R., Katsikas, S. K., Anderst-Kotsis, G.,
Tjoa, A. M., and Khalil, I., editors, Trust, Privacy and
Security in Digital Business, volume 11711 of Lecture
Notes in Computer Science, pages 63–77. Springer In-
ternational Publishing, Cham.
U.S. Department of Health and Human Services
(n.N.). Summary of the HIPAA Privacy Rule.
https://www.hhs.gov/hipaa/for-professionals/privacy/
laws-regulations/index.html. accessed 16. Juli 2019.
Wan, Z., Vorobeychik, Y., Xia, W., Clayton, E. W., Kantar-
cioglu, M., Ganta, R., Heatherly, R., and Malin, B. A.
(2015). A game theoretic framework for analyzing re-
identification risk. PloS one, 10(3):e0120592.
Wu, F. T. (2012). Defining privacy and utility in data sets.
84 University of Colorado Law Review 1117 (2013);
2012 TRPC, pages 1117–1177.
Zhang, J. Y., Wu, P., Zhu, J., Hu, H., and Bonomi, F.
(2013). Privacy-preserved mobile sensing through hy-
brid cloud trust framework. In 2013 IEEE Sixth Inter-
national Conference on Cloud Computing, pages 952–
953.
Zissis, D. and Lekkas, D. (2012). Addressing cloud com-
puting security issues. Future Generation Computer
Systems, 28(3):583 – 592.
ICEIS 2020 - 22nd International Conference on Enterprise Information Systems
344