Thirty-Second AAAI Conference on Artificial Intelli-
gence.
Chen, Z. and Monperrus, M. (2018). The remarkable role of
similarity in redundancy-based program repair. arXiv
preprint arXiv:1811.05703.
Chen, Z. and Monperrus, M. (2019). A literature study
of embeddings on source code. arXiv preprint
arXiv:1904.03061.
DeFreez, D., Thakur, A. V., and Rubio-Gonz
´
alez, C.
(2018). Path-based function embedding and its ap-
plication to specification mining. arXiv preprint
arXiv:1802.07779.
Devlin, J., Uesato, J., Singh, R., and Kohli, P. (2017). Se-
mantic code repair using neuro-symbolic transforma-
tion networks. arXiv preprint arXiv:1710.11054.
Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N.
(2013). Boa: A language and infrastructure for ana-
lyzing ultra-large-scale software repositories. In 2013
35th International Conference on Software Engineer-
ing (ICSE), pages 422–431. IEEE.
Gu, X., Zhang, H., and Kim, S. (2018). Deep code search.
In 2018 IEEE/ACM 40th International Conference on
Software Engineering (ICSE), pages 933–944. IEEE.
Harer, J. A., Kim, L. Y., Russell, R. L., Ozdemir, O., Kosta,
L. R., Rangamani, A., Hamilton, L. H., Centeno, G. I.,
Key, J. R., Ellingwood, P. M., et al. Automated soft-
ware vulnerability detection with machine learning.
Henkel, J., Lahiri, S. K., Liblit, B., and Reps, T. (2018).
Code vectors: Understanding programs through em-
bedded abstracted symbolic traces. In Proceedings of
the 2018 26th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 163–174.
Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu,
P. (2012). On the naturalness of software. In 2012
34th International Conference on Software Engineer-
ing (ICSE), pages 837–847. IEEE.
Husain, H., Wu, H.-H., Gazit, T., Allamanis, M., and
Brockschmidt, M. (2019). Codesearchnet challenge:
Evaluating the state of semantic code search. arXiv
preprint arXiv:1909.09436.
Li, Y., Wang, S., Nguyen, T. N., and Van Nguyen, S. (2019).
Improving bug detection via context-based code rep-
resentation learning and attention-based neural net-
works. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–30.
Lu, M., Liu, Y., Li, H., Tan, D., He, X., Bi, W., and Li, W.
(2019). Hyperbolic function embedding: Learning hi-
erarchical representation for functions of source code
in hyperbolic space. Symmetry, 11(2):254.
Matskevich, S. and Gordon, C. S. (2018). Generating com-
ments from source code with ccgs. In Proceedings
of the 4th ACM SIGSOFT International Workshop on
NLP for Software Engineering, pages 26–29.
Miceli-Barone, A. V. and Sennrich, R. (2017). A parallel
corpus of python functions and documentation strings
for automated code documentation and code genera-
tion. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume
2: Short Papers), pages 314–319.
Nguyen, T. D., Nguyen, A. T., Phan, H. D., and Nguyen,
T. N. (2017). Exploring api embedding for api us-
ages and applications. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering (ICSE),
pages 438–449. IEEE.
Pradel, M. and Sen, K. (2018). Deepbugs: A learn-
ing approach to name-based bug detection. Pro-
ceedings of the ACM on Programming Languages,
2(OOPSLA):1–25.
Ribeiro, L. F., Saverese, P. H., and Figueiredo, D. R.
(2017). struc2vec: Learning node representations
from structural identity. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 385–394.
Sachdev, S., Li, H., Luan, S., Kim, S., Sen, K., and Chan-
dra, S. (2018). Retrieval on source code: a neural code
search. In Proceedings of the 2nd ACM SIGPLAN In-
ternational Workshop on Machine Learning and Pro-
gramming Languages, pages 31–41.
Yao, Z., Peddamail, J. R., and Sun, H. (2019). Coacor:
code annotation for code retrieval with reinforcement
learning. In The World Wide Web Conference, pages
2203–2214.
Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and
Leskovec, J. (2018). Hierarchical graph representation
learning with differentiable pooling. In Advances in
neural information processing systems, pages 4800–
4810.
ICEIS 2020 - 22nd International Conference on Enterprise Information Systems
366