REFERENCES
Barbosa, Denilson; Mendelzon, Alberto; Keenleyside,
John; Lyons, Kelly (2002): ToXgene. In David DeWitt,
Michael Franklin, Bongki Moon (Eds.): Proceedings of
the 2002 ACM SIGMOD international conference on
Management of data - SIGMOD '02. the 2002 ACM
SIGMOD international conference. Madison,
Wisconsin, 03.06.2002 - 06.06.2002. New York, New
York, USA: ACM Press, p. 616.
Bizer, Christian; Boncz, Peter; Brodie, Michael L.; Erling,
Orri (2012): The Meaningful Use of Big Data. Four
Perspectives – Four Challenges. In SIGMOD Rec. 40
(4), pp. 56–60.
Bruno, Nicolas; Chaudhuri, Surajit (2005): Flexible
database generators. In Klemens Böhm (Ed.):
Proceedings of the 31st International conference on
very large data bases. Trondheim, Norway, 30.08.2005-
02.09.2005. New York: ACM, pp. 1097–1107.
Bungartz, Hans-Joachim; Zimmer, Stefan; Buchholz,
Martin; Pflüger, Dirk (2013): Modellbildung und
Simulation. Berlin, Heidelberg: Springer Berlin
Heidelberg.
Ceravolo, Paolo; Azzini, Antonia; Angelini, Marco;
Catarci, Tiziana; Cudré-Mauroux, Philippe; Damiani,
Ernesto et al. (2018): Big Data Semantics. In J Data
Semant 7 (2), pp. 65–85.
Federal Ministry of Justice and Consumer Protection
(2018): Federal Data Protection Act. BDSG. Available
online at http://www.gesetze-im-
internet.de/bdsg_2018/, checked on 1/28/2020.
Fernandes de Mello, Rodrigo; Antonelli Ponti, Moacir
(2018): Machine Learning. A Practical Approach on
the Statistical Learning Theory. Cham: Springer
Nature; Springer.
Gao, Jerry; Xie, Chunli; Tao, Chuanqi (2016): Big Data
Validation and Quality Assurance -- Issuses,
Challenges, and Needs. In : 2016 IEEE Symposium on
Service-Oriented System Engineering (SOSE). 2016
IEEE Symposium on Service-Oriented System
Engineering (SOSE). Oxford, United Kingdom,
29.03.2016 - 02.04.2016: IEEE, pp. 433–441.
Geuer, Marco (2017): Datenqualität messen: Mit 11
Kriterien Datenqualität quantifizieren. Available
online at https://www.business-information-
excellence.de/datenqualitaet/86-datenqualitaet-
messen-11-datenqualitaets-kriterien, updated on
10/29/2017, checked on 1/28/2020.
Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi;
Xu, Bing; Warde-Farley, David; Ozair, Sherjil et al.
(2014): Generative Adversarial Networks. Available
online at http://arxiv.org/pdf/1406.2661v1.
Gray, Jim; Sundaresan, Prakash; Englert, Susanne;
Baclawski, Ken; Weinberger, Peter J. (1994): Quickly
generating billion-record synthetic databases. In
Richard T. Snodgrass, Marianne Winslett (Eds.):
Proceedings of the 1994 ACM SIGMOD international
conference on Management of data - SIGMOD '94. the
1994 ACM SIGMOD international conference.
Minneapolis, Minnesota, United States, 24.05.1994 -
27.05.1994. New York, New York, USA: ACM Press,
pp. 243–252.
Grover, Varun; Chiang, Roger H.L.; Liang, Ting-Peng;
Zhang, Dongsong (2018): Creating Strategic Business
Value from Big Data Analytics: A Research
Framework. In Journal of Management Information
Systems 35 (2), pp. 388–423.
Harrington, Peter (2012): Machine learning in action.
Greenwich, Conn.: Manning (Safari Tech Books
Online). Available online at http://
proquest.safaribooksonline.com/9781617290183.
Häusler, Robert; Bernhardt, Chris; Bosse, Sascha;
Turowski, Klaus (2019): A Review of the Literature on
Teaching and Learning Environments. In: 25th
Americas Conference on Information Systems, AMCIS
2019, Cancun, Q.R, Mexico, August 15-17, 2019:
Association for Information Systems.
Hazen, Benjamin T.; Boone, Christopher A.; Ezell, Jeremy
D.; Jones-Farmer, L. Allison (2014): Data quality for
data science, predictive analytics, and big data in
supply chain management: An introduction to the
problem and suggestions for research and applications.
In International Journal of Production Economics 154,
pp. 72–80.
Houkjær, Kenneth; Torp, Kristian; Wind, Rico (2006):
Simple and realistic data generation. In Umeshwar
Dayal (Ed.): Proceedings of the 32nd international
conference on very large data bases. VLDB
Endowment, pp. 1243–1246.
Janowicz, Krzysztof; van Harmelen, Frank; Hendler, James
A.; Hitzler, Pascal (2015): Why the Data Train Needs
Semantic Rails. In AIMag 36 (1), p. 5.
Jöns, Johanna (2016): Daten als Handelsware. Deutsches
Institut für Vertrauen und Sicherheit im Internet.
Available online at https://www.divsi.de/wp-
content/uploads/2016/03/Daten-als-Handelsware.pdf,
checked on 1/28/2020.
Lang, Andreas (2012): Anonymisierung/
Pseudonymisierung von Daten für den Test. In:
D.A.CH Security Conference 2012. Konstanz.
Li, Wei; Gauci, Melvin; Gross, Roderich (2013): A
coevolutionary approach to learn animal behavior
through controlled interaction. In Enrique Alba,
Christian Blum (Eds.): Proceeding of the fifteenth
annual conference on Genetic and evolutionary
computation conference - GECCO '13. Proceeding of
the fifteenth annual conference. Amsterdam, The
Netherlands, 06.07.2013 - 10.07.2013. New York, New
York, USA: ACM Press, p. 223.
Maroufkhani, Parisa; Wagner, Ralf; Wan Ismail, Wan
Khairuzzaman; Baroto, Mas Bambang; Nourani,
Mohammad (2019): Big Data Analytics and Firm
Performance: A Systematic Review. In Information 10
(7), p. 226.
Müller, Oliver; Fay, Maria; Vom Brocke, Jan (2018): The
Effect of Big Data and Analytics on Firm Performance:
An Econometric Analysis Considering Industry
Characteristics. In Journal of Management
Information Systems 35 (2), pp. 488–509.