arm rehabilitation. In Proceedings of the 18th Inter-
national Conference on Human-Computer Interaction
with Mobile Devices and Services, pages 112–123.
ACM.
Mitchell, J. R., Sharma, P., Modi, J., Simpson, M., Thomas,
M., Hill, M. D., and Goyal, M. (2011). A smartphone
client-server teleradiology system for primary diagno-
sis of acute stroke. Journal of medical Internet re-
search, 13(2).
Nam, H. S., Heo, J., Kim, J., Kim, Y. D., Song, T. J., Park,
E., and Heo, J. H. (2014). Development of smartphone
application that aids stroke screening and identifying
nearby acute stroke care hospitals. Yonsei medical
journal, 55(1):25–29.
Pagliari, C. (2007). Design and evaluation in ehealth: chal-
lenges and implications for an interdisciplinary field.
Journal of medical Internet research, 9(2):e15.
Peleg, M., Shahar, Y., Quaglini, S., Broens, T., Budasu,
R., Fung, N., Fux, A., Garc
´
ıa-S
´
aez, G., Goldstein,
A., Gonz
´
alez-Ferrer, A., et al. (2017). Assessment of
a personalized and distributed patient guidance sys-
tem. International journal of medical informatics,
101:108–130.
Place, S., Blanch-Hartigan, D., Rubin, C., Gorrostieta, C.,
Mead, C., Kane, J., Marx, B. P., Feast, J., Deckers-
bach, T., et al. (2017). Behavioral indicators on a
mobile sensing platform predict clinically validated
psychiatric symptoms of mood and anxiety disorders.
Journal of medical Internet research, 19(3).
Recio-Rodriguez, J. I., Agudo-Conde, C., Martin-
Cantera, C., Gonz
´
alez-Viejo, M. N., Fernandez-
Alonso, M. D. C., Arietaleanizbeaskoa, M. S.,
Schmolling-Guinovart, Y., Maderuelo-Fernandez, J.-
A., Rodriguez-Sanchez, E., Gomez-Marcos, M. A.,
et al. (2016). Short-term effectiveness of a mobile
phone app for increasing physical activity and adher-
ence to the mediterranean diet in primary care: A ran-
domized controlled trial (evident ii study). Journal of
medical Internet research, 18(12).
Richardson, A., Kraus, S., Weiss, P. L., and Rosenblum,
S. (2008). COACH - cumulative online algorithm for
classification of handwriting deficiencies. In IAAI’08
Proceedings of the 20th national conference on In-
novative applications of artificial intelligence, pages
1725–1730.
Richardson, A., Perl, A., Natan, S., and Segev, G. (2019).
A clinical decision support system based on an unob-
trusive mobile app. In 5th International Conference
on Information and Communication Technologies for
Ageing Well and e-Health, pages 167–173.
Richardson, A., Rosenblum, S., and Hassin-Baer, S. (2019).
Multidisciplinary teamwork in the design of dailycog
for evaluating mild cognitive impairment (mci) in
parkinson’s disease. In 2019 International Conference
on Virtual Rehabilitation (ICVR), pages 1–2.
Richardson, A., Shani Ben Ari, and Sinai, M., Atsmon, A.,
Conley, E. S., Gat, Y., and Segev, G. (2019). Mobile
applications for stroke: A survey and a speech clas-
sification approach. In 5th International Conference
on Information and Communication Technologies for
Ageing Well and e-Health, pages 159 – 166.
Rosenblum, S. (2006). The development and standardiza-
tion of the children activity scales (chas-p/t) for the
early identification of children with developmental co-
ordination disorders. Child: Care, Health and Devel-
opment, 32(6):619–632.
Rosenblum, S., Parush, S., and Weiss, P. L. (2003). The
In Air phenomenon: temporal and spatial correlates
of the handwriting process. Perceptual Motor Skills,
96(3 pt 1):933–954.
Rosenfeld, A. and Richardson, A. (2019). Explainability in
human–agent systems. Autonomous Agents and Multi-
Agent Systems, 33(6):673–705.
Seo, W.-K., Kang, J., Jeon, M., Lee, K., Lee, S., Kim, J. H.,
Oh, K., and Koh, S.-B. (2015). Feasibility of using
a mobile application for the monitoring and manage-
ment of stroke-associated risk factors. Journal of Clin-
ical Neurology, 11(2):142–148.
Shibl, R., Lawley, M., and Debuse, J. (2013). Factors influ-
encing decision support system acceptance. Decision
Support Systems, 54(2):953–961.
Terry, K. (2015). Number of health apps soars but use does
not always follow. Medscape Medical News.
Van Velsen, L., Wentzel, J., and Van Gemert-Pijnen, J. E.
(2013). Designing ehealth that matters via a multidis-
ciplinary requirements development approach. JMIR
research protocols, 2(1):e21.
Weymann, N., H
¨
arter, M., and Dirmaier, J. (2016). Informa-
tion and decision support needs in patients with type
2 diabetes. Health informatics journal, 22(1):46–59.
Writing, G. M., Mozaffarian, D., Benjamin, E., Go, A., Ar-
nett, D., Blaha, M., Cushman, M., Das, S., de Fer-
ranti, S., Despr
´
es, J., et al. (2016). Heart disease and
stroke statistics-2016 update: A report from the amer-
ican heart association. Circulation, 133(4):e38.
Zhang, M. W., Yeo, L. L., and Ho, R. C. (2015). Harness-
ing smartphone technologies for stroke care, rehabili-
tation and beyond. BMJ innovations, 1(4):145–150.
Multidisciplinary Research in e-Health: Challenges and Thoughts
255