REFERENCES
Akamatsu, M., Green, P., & Bengler, K. (2013).
Automotive Technology and Human Factors Research:
Past, Present, and Future. International Journal of
Vehicular Technology, 2013, 27.
Bagheri, S. M., Assemi, B., Mesbah, M., & Hickman, M.
(2018). Cost-effective ubiquitous method for motor
vehicle speed estimation using smartphones. IET
Wireless Sensor Systems, 8(6), 340-349.
https://doi.org/10.1049/iet-wss.2018.5023
Binding, C., Gantenbein, D., Jansen, B., Sundström, O.,
Andersen, P., Marra, F., Poulsen, B., & Træholt, C.
(2010). Electric vehicle fleet integration in the Danish
EDISON project—A virtual power plant on the island
of Bornholm. 1-8.
https://doi.org/10.1109/PES.2010.5589605
Bingham, C., Walsh, C., & Carroll, S. (2012). Impact of
driving characteristics on electric vehicle energy
consumption and range. IET Intelligent Transport
Systems, 6(1), 29-35. https://doi.org/10.1049/iet-
its.2010.0137
Boriboonsomsin, K., Barth, M. J., Zhu, W., & Vu, A.
(2012). Eco-Routing Navigation System Based on
Multisource Historical and Real-Time Traffic
Information. IEEE Transactions on Intelligent
Transportation Systems, 13(4), 1694-1704.
https://doi.org/10.1109/tits.2012.2204051
Braun, M., Schubert, J., Pfleging, B., & Alt, F. (2019).
Improving Driver Emotions with Affective Strategies.
Multimodal Technologies and Interaction, 3(1), 21.
https://doi.org/10.3390/mti3010021
CEER. (2019). Report on Regulatory Frameworks for
European Energy Networks, CEER (N.
o
C18-IRB-38-
03). https://www.ceer.eu/documents/104400/-/-
/9665e39a-3d8b-25dd-7545-09a247f9c2ff
De Cauwer, C., Van Mierlo, J., & Coosemans, T. (2015).
Energy Consumption Prediction for Electric Vehicles
Based on Real-World Data. Energies, 8(8), 8573-8593.
https://doi.org/10.3390/en8088573
Dielmann, K., & Velden, A. (2003). Virtual power plants
(VPP)—A new perspective for energy generation? 18-
20. https://doi.org/10.1109/SPCMTT.2003.1438108
Guerrero, J. I., Personal, E., García, A., Parejo, A., Pérez,
F., & León, C. (2019). Distributed Charging
Prioritization Methodology Based on Evolutionary
Computation and Virtual Power Plants to Integrate
Electric Vehicle Fleets on Smart Grids. Energies,
12(12), 2402. https://doi.org/10.3390/en12122402
Guerrero, J. I., Personal, E., Parejo, A., García, S., García,
A., & León, C. (2019). Forecasting Recharging
Demand to Integrate Electric Vehicle Fleets in Smart
Grids. Advanced Communication and Control Methods
for Future Smartgrids.
https://doi.org/10.5772/intechopen.88488
He, Y., Chowdhury, M., Ma, Y., & Pisu, P. (2012). Merging
mobility and energy vision with hybrid electric vehicles
and vehicle infrastructure integration.
https://doi.org/10.1016/j.enpol.2011.11.021
Hiermann, G., Puchinger, J., Ropke, S., & Hartl, R. F.
(2016). The Electric Fleet Size and Mix Vehicle
Routing Problem with Time Windows and Recharging
Stations. European Journal of Operational Research,
252(3), 995-1018.
https://doi.org/10.1016/j.ejor.2016.01.038
Hu, J., Morais, H., Sousa, T., & Lind, M. (2016). Electric
vehicle fleet management in smart grids: A review of
services, optimization and control aspects. Renewable
and Sustainable Energy Reviews, 56, 1207-1226.
https://doi.org/10.1016/j.rser.2015.12.014
Road vehicles—Diagnostic systems—Part 2: CARB
requirements for interchange of digital information,
ISO 9141-2:1994 (1994).
Izquierdo-Reyes, J., Ramirez-Mendoza, R. A., Bustamante-
Bello, M. R., Navarro-Tuch, S., & Avila-Vazquez, R.
(2018). Advanced driver monitoring for assistance
system (ADMAS). International Journal on Interactive
Design and Manufacturing (IJIDeM), 12(1), 187-197.
https://doi.org/10.1007/s12008-016-0349-9
Jansen, B., Binding, C., Sundström, O., & Gantenbein, D.
(2010). Architecture and Communication of an Electric
Vehicle Virtual Power Plant. 2010 First IEEE
International Conference on Smart Grid
Communications, 149-154.
https://doi.org/10.1109/SMARTGRID.2010.5622033
Khan, M. Q., & Lee, S. (2019). A Comprehensive Survey
of Driving Monitoring and Assistance Systems. Sensors
(Basel, Switzerland), 19(11).
https://doi.org/10.3390/s19112574
Kieny, C., Berseneff, B., Hadjsaid, N., Besanger, Y., &
Maire, J. (2009). On the Concept and Interest of Virtual
Power Plant: Some Results from the European Project
FENIX. 1-6.
https://doi.org/10.1109/PES.2009.5275526
Lazar, J. (s. f.). Electricity Regulation In the US: A Guide.
228.
Mansour, S., Harrabi, I., Maier, M., & Joós, G. (2015). Co-
simulation study of performance trade-offs between
centralised, distributed, and hybrid adaptive PEV
charging algorithms. Computer Networks: The
International Journal of Computer and
Telecommunications Networking, 93(P1), 153–165.
https://doi.org/10.1016/j.comnet.2015.08.036
Marra, F., Sacchetti, D., Pedersen, A. B., Andersen, P. B.,
Træholt, C., & Larsen, E. (2012). Implementation of an
Electric Vehicle test bed controlled by a Virtual Power
Plant for contributing to regulating power reserves.
2012 IEEE Power and Energy Society General
Meeting, 1-7.
https://doi.org/10.1109/PESGM.2012.6345269
Marra, Francesco, Sacchetti, D., Træholt, C., & Larsen, E.
(2011). Electric vehicle requirements for operation in
smart grids. 1-7.
https://doi.org/10.1109/ISGTEurope.2011.6162648
Mashhour, E., & Moghaddas-Tafreshi, S. M. (2009). The
opportunities for future virtual power plant in the power
market, a view point. 2009 International Conference on
Clean Electrical Power, 448-452.
https://doi.org/10.1109/ICCEP.2009.5212014
Emotional Factor Forecasting based on Driver Modelling in Electric Vehicle Fleets
611