REFERENCES
Clouard, R., Renouf, A., Revenu, M., 2010. An Ontology-
Based Model for Representing Image Processing Ob-
jectives. International Journal of Pattern Recognition
and Artificial Intelligence, World Scientific Publishing,
pp.1181-1208.
Comaniciu, D. and Meer, P. 1999. Mean shift analysis and
applications. International Conference on Computer
Vision, 2, pp. 1197-1203.
Comaniciu, D., and Meer, P. 2002. Mean shift: A robust
approach toward feature space analysis. IEEE Transac-
tions on pattern analysis and machine intelligence,
24(5), pp. 603-619.
Desyatkin, A., Takakai, F. and Nikolaeva, M. 2018. Land-
scape Microzones within Thermokarst Depressions of
Central Yakutia under Present Climatic Conditions. Ge-
osciences 2018, 8. MDPI
Fedorov, A., 2019. Permafrost Landscapes: Classification
and Mapping. Geosciences 2019, 9. MDPI.
Gadal, S., 2012. Geographic Space Ontology, Locus Ob-
ject, and Spatial Data Representation Semantic Theory.
Universal Ontology of Geographic Space: Semantic
Enrichment for Spatial Data, IGI Global, pp.28-52,
9786-1-4666-032-27-1.
Gadal, S., and Ouerghemmi, W., 2019. Knowledge Models
and Image Processing Analysis in Remote Sensing: Ex-
amples of Yakutsk (Russia) and Kaunas (Lithuania). In
Proceedings of the 5th International Conference on Ge-
ographical Information Systems Theory, Applications
and Management, Heraklion, Crete – Greece. pp. 282-
288.
Konys, A., 2018. An Ontology-Based Knowledge Model-
ling for a Sustainability Assessment Domain. In Sus-
tainability Journal 10.
Kordjamshidi, P., Moens, M-F. 2014. Global Machine
Learning for Spatial Ontology Population. Journal of
Web Semantics pp. 1-29
Li, J., Carlson, B.E., and Lacis A.A., 2009. A study on the
temporal and spatial variability of absorbing aerosols
using total ozone mapping spectrometer and ozone
monitoring instrument aerosol index data. J. Geophys.
Res., 114.
Maragos, P. 1989 A representation theory for morphologi-
cal image and signal processing. IEEE Transactions on
Pattern Analysis and Machine Intelligence 11.6 pp.
586−599.
Michel, J., Youssefi, D., & Grizonnet, M. (2015). Stable
mean-shift algorithm and its application to the segmen-
tation of arbitrarily large remote sensing images. IEEE
Transactions on Geoscience and Remote Sensing,
53(2), pp. 952-964.
Ouerghemmi, W., Gadal, S., Mozgeris, G., Jonikavičius,
D., and Weber, C., 2017. Urban objects classification
by spectral library: feasibility and applications. In 2017
Joint Urban Remote Sensing Event (JURSE), Dubai,
pp. 1- 4.
Sinha, G., Mark, D., 2010. Toward A Foundational Ontol-
ogy of the Landscape. MDPI.
Sofou, A., Evangelopoulos, G., Maragos, P. 2005. Soil Im-
age Segmentation and Texture Analysis: A Computer
Vision Approach. IEEE Geoscience and Remote Sens-
ing Letters, Vol. 2, No. 4, pp. 394-398
Pal, M. and Mather, P. 2005. Support vector machines for
classification in remote sensing. In International Jour-
nal of Remote Sensing Vol.5. pp. 1007-1011
Pashkevich, M., 2017. Classification and Environmental
Impact of Mine Dumps. In Assessment, Restoration and
Reclamation of Mining Influenced Soils. pp. 1-32
Petropoulos, G., Vadrevu, K., Xanthopoulos, G., Karantou-
nias, G., Scholze, M. 2010. A Comparison of Spectral
Angle Mapper and Artificial Neural Network Classifi-
ers Combined with Landsat TM Imagery Analysis for
Obtaining Burnt Area Mapping. Sensors. pp. 1967-
1985.
Puebla-Martınez, M., Perea-Ortega, J., Simon-Cuevas, A.,
and Romero, F. 2018. Automatic Expansion of Spatial
Ontologies for Geographic Information Retrieval.
Communications in Computer and Information Sci-
ence. pp. 659-670
VoPham, T., Hart, J., Laden, F. and Chiang, Y. 2018.
Emerging trends in geospatial artificial intelligence (ge-
oAI): potential applications for environmental epidemi-
ology. Environ Health 17, 40
Zamorshchikova, L., Khokholova, I., Ikonnikova, A., Sam-
sonova, M. and Lebedeva, V. 2018. Toponymic Land-
scape of Central Yakutia: Etymological Analysis of Ge-
ographical Names. Journal of Siberian Federal Univer-
sity. Humanities & Social Sciences.