o Content level proposes adequate
resources according to the student’s
knowledge and in relation with the
corresponding sequences
o Presentation level determines the better
form and nature of the resources
o Learning process level which defines
specific learning methods to adopt
during sequences
a-teacher: It presents to the teacher tables and
graphs offering a monitoring space and
calculate indicators that will be displayed on.
5 CONCLUSIONS AND FUTURE
WORK
In this paper, we proposed an agent-based
Personalized Learning Architecture. The system is
characterized by the following properties:
A learner model to store and permanently
update learner’s profile.
Learning strategies according to the learner's
profile.
Scenarios chosen by the course manager based
on prerequisites and learner's profile.
Ontologies play an increasing role in the new
generation of information or knowledge-based
systems. It is also a keystone of multi-agent systems
using high-level communication (Freitas et al.,
2017).
Our work is in progress. It consists firstly in
finalizing the ontology of the learner model.
Secondly agent integration and personalization of
scenarios will be dealt in the Moodle environment.
Our challenge is to identify, from traces and
questionnaires deployed throughout learning
processes on Moodle, the common trajectories
leading in achievement of objectives, and in
academic and professional success.
REFERENCES
Brusilovsky, P., Schwarz, E., Weber, G., 1996. ELM-
ART: An intelligent tutoring system on World Wide
Web. In Intelligent Tutoring Systems, Lectures Notes
in Computer Science, Vol 1086.
Brusilovsky, P., 2001. Adaptive hypermedia, User
Modeling and User Adapted Interaction, 11(1/2),
pp87-110.
Chachoua, S., Tamani, N., Malki, J., Estraillier, P., 2016.
Towards a Trace-Based Adaptation Model in e-
Learning Systems. In The 24th International
Conference on Computers in Education, Nov 2016,
Mumbai, India. hal-01899912.
Dardier, A., Laïb N., Robert-Bobée I. 2013. Les
décrocheurs du système éducatif : de qui parle-t-on ?
in France portrait social, édition 2013 INSEE Paris
El Haddioui, I., 2015. Manhali : un système de gestion
d’apprentissage adaptatif pour la modélisation du
comportement et la détection du style d’apprentissage
de l’apprenant. In 7ème Conférence sur les
Environnements Informatiques pour l’Apprentissage
Humain (EIAH 2015), Jun 2015, Agadir, Maroc.
pp.462-0. hal-01405992.
Freitas, A, Panisson, A., R., Hilgert, L., Meneguzzi, F.,
2017. Applying ontologies to the development and
execution of Multi-Agent Systems. In Web
Intelligence, vol. 15, no. 4, pp. 291-302,2017.
Gong,Y., 2014. Student Modeling in Intelligent Tutoring
Systems, Doctoral dissertation, Worcester Polytechnic
Institute.
Henze, N., Dolog, P. Nejdl, W., et al., 2004. Reasoning
and ontologies for personalized e-learning in the
semantic web. In Journal of Educational Technology
& Society, 7 (4), 82–97.
Kaya, G., Altun,A., 2011. A Learner Model for Learning
Object Based Personalized Learning Environments,
Communications. In Computer and Information
Science, October 2011.
Muruganandam, S., Srininvasan, N., 2017. Personalised e-
learning system using learner profile ontology and
sequential pattern mining-based recommendation, In
Int. J. Business Intelligence and Data Mining, Vol. 12,
No. 1, pp.78–93.
Nafea, S. M., Siewe, F., He, Y., 2017. An adaptative
learning ontological framework based on learning
styles and teaching strategies. In Proceedings of 85th
ISERD International Conference, Cairo, Egypt, 11th-
12th September 2017.
Parmentier P. 2018. La réussite des étudiants, objectif de
la transformation pédagogique. In Journées nationales
de l'Innovation pédagogique dans l'Enseignement
supérieur. 20 Novembre 2018
Tack, A,François, T., Ligozat, A.-L. Fairon, C., 2016.
Modèles adaptatifs pour prédire automatiquement la
compétence lexicale d’un apprenant de français langue
étrangère. In JEP-TALNRECITAL 2016
, Jan 2016,
Paris, France. Actes de la conférence conjointe JEP-
TALN-RECITAL 2016. <hal-01631772>.
Tadlaoui, M. A., Aammou, S., Khaldi,M., Carvalho, R. N.,
2016.Learner Modeling in Adaptive Educational
Systems: A Comparative Study.InInternational
Journal of Modern Education and Computer Science,
vol. 8, n° 13, p. 1.
Talon, B., Kerkeni, I., Tliche, S., Belaïd Ajroud, H.,
2013.Tracking a collaborative Web 2.0 learning
environment. D. In Hernandez-Leo et al. (Eds): EC-
TEL 2013, LNCS 8095, pp 577-583. Springer-Verlag
Berlin Heidelberg.
Tmimi, M.,Benslimane, M., Berrada, M., Ouazzani, K.,
2017.A Proposed Conception of the Learner Model for