Intelligence and Humanized Computing, 10(6):2435–
2452.
Gupta, H., Dastjerdi, A. V., Ghosh, S. K., and Buyya, R.
(2017). ifogsim: A toolkit for modeling and simula-
tion of resource management techniques in the inter-
net of things, edge and fog computing environments.
Softw., Pract. Exper., 47(9):1275–1296.
Huang, Z., Lin, K.-J., Yu, S.-Y., and jen Hsu, J. Y. (2014).
Co-locating services in iot systems to minimize the
communication energy cost. Journal of Innovation in
Digital Ecosystems, 1(1):47 – 57.
J. Kang, R. Yu, X. H. S. M. Y. Z. and Hossain, E. (2017).
Enabling Localized Peer-to-Peer Electricity Trading
Among Plug-in Hybrid Electric Vehicles Using Con-
sortium Blockchains. IEEE Trans. Ind. Informatics,
13(6):3154–3164.
Jabbar, R., Al-Khalifa, K., Kharbeche, M., Alhajyaseen,
W., Jafari, M., and Jiang, S. (2018a). Applied inter-
net of things iot: Car monitoring system for model-
ing of road safety and traffic system in the state of
qatar. In Qatar Foundation Annual Research Confer-
ence Proceedings Volume 2018 Issue 3, volume 2018,
page ICTPP1072. Hamad bin Khalifa University Press
(HBKU Press).
Jabbar, R., Al-Khalifa, K., Kharbeche, M., Alhajyaseen,
W., Jafari, M., and Jiang, S. (2018b). Real-time
driver drowsiness detection for android application us-
ing deep neural networks techniques. Procedia com-
puter science, 130:400–407.
Jabbar, R., Shinoy, M., Kharbeche, M., Al-Khalifa, K.,
Krichen, M., and Barkaoui, K. (2019). Urban Traf-
fic Monitoring and Modeling System: An IoT Solu-
tion for Enhancing Road Safety. In iintec 2019, Ham-
mamet, Tunisia.
Jabbar, R., Shinoy, M., Kharbeche, M., Al-Khalifa, K.,
Krichen, M., and Barkaoui, K. (2020). Driver drowsi-
ness detection model using convolutional neural net-
works techniques for android application.
Kordy, B., Pi
`
etre-Cambac
´
ed
`
es, L., and Schweitzer, P.
(2014). Dag-based attack and defense modeling:
Don’t miss the forest for the attack trees. Computer
Science Review, 13-14:1 – 38.
Krichen, M. (2007). Model-Based Testing for Real-Time
Systems. PhD thesis, PhD thesis, Universit Joseph
Fourier (December 2007).
Krichen, M. (2010). A formal framework for conformance
testing of distributed real-time systems. In Interna-
tional Conference On Principles Of Distributed Sys-
tems, pages 139–142. Springer.
Krichen, M. (2012). A formal framework for black-box
conformance testing of distributed real-time systems.
IJCCBS, 3(1/2):26–43.
Krichen, M. (2018). Contributions to Model-Based Test-
ing of Dynamic and Distributed Real-Time Systems.
Habilitation
`
a diriger des recherches,
´
Ecole Nationale
d’Ing
´
enieurs de Sfax (Tunisie).
Krichen, M. and Alroobaea, R. (2019). A new model-based
framework for testing security of iot systems in smart
cities using attack trees and price timed automata. In
14th International Conference on Evaluation of Novel
Approaches to Software Engineering - ENASE 2019.
Krichen, M. and Tripakis, S. (2006). Interesting properties
of the conformance relation tioco. In ICTAC’06.
Kumar, R., Ruijters, E., and Stoelinga, M. (2015). Quanti-
tative attack tree analysis via priced timed automata.
In Sankaranarayanan, S. and Vicario, E., editors, For-
mal Modeling and Analysis of Timed Systems, pages
156–171, Cham. Springer International Publishing.
L. Li, J. Liu, L. C. S. Q. W. W. X. Z. and Zhang, Z. (2018).
CreditCoin: A Privacy-Preserving Blockchain-Based
Incentive Announcement Network for Communica-
tions of Smart Vehicles. IEEE Trans. Intell. Transp.
Syst., page 1–17.
Lahami, M., Fakhfakh, F., Krichen, M., and Jma
¨
ıel, M.
(2012a). Towards a TTCN-3 Test System for Run-
time Testing of Adaptable and Distributed Systems.
In Proceedings of the 24th IFIP WG 6.1 International
Conference Testing Software and Systems (ICTSS’12),
pages 71–86.
Lahami, M. and Krichen, M. (2013). Test Isolation Pol-
icy for Safe Runtime Validation of Evolvable Software
Systems. In Proceedings of the 22nd IEEE Interna-
tional Conference on Enabling Technologies: Infras-
tructure for Collaborative Enterprises (WETICE’13),
pages 377–382.
Lahami, M., Krichen, M., Bouchakwa, M., and Jma
¨
ıel,
M. (2012b). Using Knapsack Problem Model to De-
sign a Resource Aware Test Architecture for Adapt-
able and Distributed Systems. In Proceedings of the
24th IFIP WG 6.1 International Conference Testing
Software and Systems (ICTSS’12), pages 103–118.
Lahami, M., Krichen, M., and Jma
¨
ıel, M. (2016). Safe and
Efficient Runtime Testing Framework Applied in Dy-
namic and Distributed Systems. Science of Computer
Programming (SCP), 122(C):1–28.
Leiding, Benjamin, P. M. and Hogrefe., D. (2016). Self-
managed and blockchain-based vehicular ad-hoc net-
works. the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct.
Ma
ˆ
alej, A. J., Lahami, M., Krichen, M., and Jma
¨
ıel, M.
(2018). Distributed and resource-aware load testing
of WS-BPEL compositions. In ICEIS (2), pages 29–
38. SciTePress.
Madhusudan Singh, S. K. (2017). Blockchain based Intelli-
gent Vehicle Data Sharing Framework. arXiv preprint,
arXiv: 1708.09721.
Mahmud, R., Ramamohanarao, K., and Buyya, R. (2018).
Latency-aware application module management for
fog computing environments. ACM Trans. Internet
Technol., 19(1):9:1–9:21.
Ottenw
¨
alder, B., Koldehofe, B., Rothermel, K., and Ra-
machandran, U. (2013). Migcep: Operator migra-
tion for mobility driven distributed complex event pro-
cessing. In Proceedings of the 7th ACM Interna-
tional Conference on Distributed Event-based Sys-
tems, DEBS ’13, pages 183–194, New York, NY,
USA. ACM.
Rahbari, D. and Nickray, M. (2017). Scheduling of fog net-
works with optimized knapsack by symbiotic organ-
isms search. In 2017 21st Conference of Open Inno-
vations Association (FRUCT), pages 278–283.
Sean Rowan, Michael Clear, M. H. and Goldrick, C. M.
(2017). Securing vehicle to vehicle data sharing us-
ing blockchain through visible light and acoustic side-
channels. eprint arXiv:1704.02553.
Skarlat, O., Schulte, S., Borkowski, M., and Leitner, P.
(2016). Resource provisioning for iot services in
A Formal Model-Based Testing Framework for Validating an IoT Solution for Blockchain-based Vehicles Communication
601