sist in query cataloguing and reuse.
As future work, we are aware of the limitations
of the defined convention in its current state, so that
our first intention is to extend the DSL definition to
generalise it within the domain of mobility, and to be
applied in more use cases. Finally, the last next step
is the functionality to automatically generate SQL
queries from the MobilityFNC format.
ACKNOWLEDGEMENTS
Research funded by the Spanish Ministerio de
Ciencia e Innovaci
´
on [grant number CSO2017-
82156-R], the AEI/FEDER,UE, the Departament
d’Innovaci
´
o, Universitats i Empresa, Generalitat de
Catalunya [grant number 2017SGR22] and the Es-
cola d’Administraci
´
o Publica de Catalunya, Gen-
eralitat de Catalunya [grant number 2018 EAPC
00002]. Sergio Trilles has been funded by the post-
doctoral programme PINV2018-Universitat Jaume I
(POSDOC-B/2018/12) and research stays programme
PINV2019-Universitat Jaume I (E-2019-31).
REFERENCES
Alsger, A. A., Mesbah, M., Ferreira, L., and Safi, H. (2015).
Use of Smart Card Fare Data to Estimate Public Trans-
port Origin – Destination Matrix. Transportation Re-
search Record: Journal of the Transportation Re-
search Board, 2535(1):88–96.
Bagchi, M. and White, P. R. (2005). The potential of public
transport smart card data. Transport Policy, 12:464–
474.
Barth, R. S. and Galante, R. (2016). Passenger density and
flow analysis and city zones and bus stops classifica-
tion for public bus service management. In SBBD,
pages 217–222.
Chandesris, M. and Nazem, M. (2018). Workshop synthe-
sis: Smart card data, new methods and applications
for public transport. Transportation Research Proce-
dia, 32:16–23.
Dom
`
enech, A. and Guti
´
errez, A. (2017). A GIS-Based
Evaluation of the Effectiveness and Spatial Cover-
age of Public Transport Networks in Tourist Des-
tinations. ISPRS International Journal of Geo-
Information, 6(3):83.
Dom
`
enech, A., Miravet, D., and Guti
´
errez, A. (2020). Min-
ing bus travel card data for analysing mobilities in
tourist regions. Journal of Maps, 16(1):40–49.
Fabbiani, E., Vidal, P., Massobrio, R., and Nesmachnow, S.
(2016). Distributed big data analysis for mobility esti-
mation in intelligent transportation systems. In Latin
American High Performance Computing Conference,
pages 146–160. Springer.
Gokasar, I. and Simsek, K. (2014). Using “big
data” for analysis and improvement of public
transportation systems in istanbul. In Ase Big-
data/Socialcom/cybersecurity Conference, Stanford
University, May 27-31, 2014. Academy of Science
and Engineering (ASE), USA,© ASE 2014.
Gokasar, I., Simsek, K., and Ozbay, K. (2015). Using big
data of automated fare collection system for analysis
and improvement of brt-bus rapid transit line in istan-
bul. In 94th Annual Meeting of the Transportation
Research Board, Washington, DC.
Guti
´
errez, A. and Miravet, D. (2016a). Estacionalidad
tur
´
ıstica y din
´
amicas metropolitanas: un an
´
alisis a par-
tir de la movilidad en transporte p
´
ublico en el Camp
de Tarragona. Revista de geograf
´
ıa Norte Grande,
89(65):65–89.
Guti
´
errez, A. and Miravet, D. (2016b). The determinants of
tourist use of public transport at the destination. Sus-
tainability (Switzerland), 8(9):1–16.
Hudak, P. (1997). Domain-specific languages. Handbook
of programming languages, 3(39-60):21.
Kurauchi, F. and Schm
¨
ocker, J.-D., editors (2017). Pub-
lic Transport Planning with Smart Card Data. CRC
Press, 1 edition.
Li, T., Sun, D., Jing, P., and Yang, K. (2018). Smart card
data mining of public transport destination: A litera-
ture review. Information, 9(1):18.
Lu, Y., Mateo-Babiano, I., and Sorupia, E. (2019). Who
uses smart card? Understanding public transport pay-
ment preference in developing contexts, a case study
of Manila’s LRT-1. IATSS Research, 43(1):60–68.
Ma, X., Wu, Y.-j., Wang, Y., Chen, F., and Liu, J. (2013).
Mining smart card data for transit riders ’ travel pat-
terns. Transportation Research Part C, 36:1–12.
Morency, C., Tr
´
epanier, M., and Agard, B. (2007). Measur-
ing transit use variability with smart-card data. Trans-
port Policy, 14(3):193–203.
Pelletier, M. P., Tr
´
epanier, M., and Morency, C. (2011).
Smart card data use in public transit: A literature
review. Transportation Research Part C: Emerging
Technologies, 19(4):557–568.
Prakasa, B., Putra, D. W., Kusumawardani, S. S., Wid-
hiyanto, B. T. Y., Habibie, F., et al. (2017). Big
data analytic for estimation of origin-destination ma-
trix in bus rapid transit system. In 2017 3rd In-
ternational Conference on Science and Technology-
Computer (ICST), pages 165–170. IEEE.
Tao, S., Corcoran, J., Mateo-Babiano, I., and Rohde, D.
(2014). Exploring brt passenger travel behaviour us-
ing big data. Applied geography, 53:90–104.
Van Deursen, A., Klint, P., and Visser, J. (2000). Domain-
specific languages: An annotated bibliography. ACM
Sigplan Notices, 35(6):26–36.
Wirth, N. (1996). Extended backus-naur form (ebnf).
Iso/Iec, 14977(2996):2–1.
Wu, H., Tan, J.-A., Ng, W. S., Xue, M., and Chen, W.
(2015). Ftt: A system for finding and tracking
tourists in public transport services. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1093–1098. ACM.
Towards an Affordable GIS for Analysing Public Transport Mobility Data: A Preliminary File Naming Convention for Avoiding
Duplication of Efforts
309