Trust establishment, key management and
membership;
Network availability and routing security
The new variant of the McEliece cryptosystem will
be used to explore these problem areas by
implementing efficient encryption and authentication
schemes. The implementation will consider the
specificities of wireless cooperative networks such as,
limited energy; limited memory; transient
connectivity and availability; shared physical
medium amongst others.
REFERENCES
Almeida, P., Napp, D., Pinto, R., 2013. A new class of
superregular matrices and MDP convolutional codes. In
Linear Algebra and its Applications 439 (7), 2145–
2157.
Almeida, P., Napp, D., Pinto, R., 2016. Superregular
matrices and applications to convolutional codes. In
Linear Algebra and its Applications 499, 1–25.
Almeida, P., Napp, A.D., 2018. A new class of
convolutional codes and its use in the McEliece
Cryptosystem. In ArXiv, vol. 1804.08955
Moufek, H., Guenda, K., 2018. A new variant of the
mceliece cryptosystem based on the smith form of
convolutional codes. In Cryptologia 42 (3), 227–239.
Rosenthal, J., Smarandache, R., 1999. Maximum distance
separable convolutional codes. In Appl. Algebra Engrg.
Comm. Comput. 10 (1), 15–32.
Zigangirov, K., Osthoff, H., 1993. Analysis of global list
decoding for convolutional codes. In European
Transactions on Telecommunications 4 (2), 165–173.
Massey, J., 1963. Threshold decoding. MIT Press,
Cambridge, Massachusetts.
Peters, C., 2010. Information-set decoding for linear codes
over f q. In: Sendrier, N. (Ed.), Post-Quantum
Cryptography. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 81–94.
Kumari, D., Saini, M. L., 2016. Design and Performance
Analysis of Convolutional Encoder and Viterbi
Decoder for Various Generator Polynomials. In Int.
Journal of Engineering Research and Applications. Vol.
6, Issue 5, (Part - 2) May 2016, pp.67-71
Sone, M.E., 2015. Efficient Key Management Scheme To
Enhance Security-Throughput Trade-Off Performance
In Wireless Networks. In Proc. Science and Information
Conference (SAI), London, UK, July 28-30 2015, pp.
1249 – 1256
Lathi, B. P., 1998. Modern Digital and Analog
Communication Systems. 3
rd
edition. Oxford
University Press
Biggs, N. L., 2008. Codes: An Introduction to Information
Communication and Cryptography. Springer – Verlag
Berlekamp, E. R., 1974. Key papers in the Development of
Coding Theory. In IEEE Press, New York.
P. Loidreau, P., Sendrier, N., 2001. Weak keys in the
McEliece public-key cryptosystem. In IEEE
Transactions on Information Theory, 47(3):1207–1211.
Loidreau, P., 2000. Strengthening McEliece Cryptosystem.
Springer-Verlag Berlin Heidelberg.
McEliece, R. J., 1978. A public-key cryptosystem based on
algebraic coding theory. In DSN Progress Report 42,
114–116.
Bernstein, D. J., Lange, T., PETERS, C., 2011. Smaller
decoding exponents: Ball-collision decoding, in:
Advances in Cryptology. In CRYPTO ’11, 31st Annual
Cryptology Conf., Santa Barbara, CA, USA, 2011, (P.
Rogaway, ed.), Lecture Notes in Comput. Sci., Vol.
6841, Springer, Berlin, pp. 743–760.
Bernstein, D. J., Lange, T., Peters, C., 2008. Attacking and
defending the McEliece cryptosystem, in: Post-
Quantum Cryptography. In 2nd Internat. Workshop -
PQCrypto ’08 (J. Buchmann et al., eds.), Cincinnati,
OH, USA, 2008, Lecture Notes in Comput. Sci., Vol.
5299, Springer, Berlin, pp. 31–46.
Biswas, B., Sendrier, N., 2008. McEliece cryptosystem
implementation: theory and practice, in: Post-Quantum
Cryptography. In 2nd Internat. Workshop—PQCrypto
’08, Cincinnati, OH, USA, 2008 (J. Buchmann et al.,
eds.), Lecture Notes in Comput. Sci., Vol. 5299,
Springer, Berlin, pp. 47–62.
Eisenbarth, T., G¨Uneysu, T., Heyse, S., Paar, C., 2009.
McEliece for embedded devices. In Cryptographic
Hardware and Embedded Systems—CHES ’09, 11th
Internat. Workshop Lausanne, Switzerland, 2009 (Ch.
Clavier et al., eds.), Lecture Notes in Comput. Sci., Vol.
5747, Springer, Berlin, 2009, pp. 49–64.
W.W. Peterson, W. W., Weldon, Jr., E. J., 1972. Error
Correcting Codes. 2nd Edition Cambridge, MA: The
MIT Press.
Arasteh, D., 2006. Teaching Convolutional Coding using
MATLAB in Communication Systems Course. In
Proceedings of the 2006 ASEE Gulf-Southwest Annual
Conference Southern University and A & M College.
Moufek, H., Guenda, K., 2015. McEliece Cryptosystem
Based on Punctured Convolutional Codes and the
Pseudo-Random Generators. In ACM Communications
in Computer Algebra, vol. 49, No.1,
Repka, M., Cayrel, P. L., 2014. Cryptography based on
error correcting codes: a survey. In Multidisciplinary
Perspectives in Cryptology and Information Security,
IGI Global, pp. 133–156.
Shoufan, A., Wink, T., Molter, H. G., Huss, S. A., Strenzke,
F., 2009. A novel processor architecture for McEliece
cryptosystem and FPGA platforms. In
ApplicationSpecific Systems, Architectures and
Processors—ASAP ’09, 20th IEEE Internat. Conf.,
Boston, MA, IEEE, pp. 98–105.
Courtois, N., Finiasz, M., and Sendrier, N., 2001. How to
achieve a McEliece-based digital signature scheme. In
ASIACRYPT 2001, Springer-Verlag, 2001, pp. 157-
174