Bengio, Y., Courville, A., and Vincent, P. (2013). Represen-
tation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelli-
gence, 35(8):1798–1828.
Cebollada, S., Pay
´
a, L., Mayol, W., and Reinoso, O. (2019).
Evaluation of clustering methods in compression of
topological models and visual place recognition us-
ing global appearance descriptors. Applied Sciences,
9(3):377.
Cebollada, S., Pay
´
a, L., Rom
´
an, V., and Reinoso, O. (2019).
Hierarchical localization in topological models under
varying illumination using holistic visual descriptors.
IEEE Access, 7:49580–49595.
Cebollada, S., Pay
´
a, L., Valiente, D., Jiang, X., and
Reinoso, O. (2019). An evaluation between global
appearance descriptors based on analytic methods
and deep learning techniques for localization in au-
tonomous mobile robots. In ICINCO 2019, 16th In-
ternational Conference on Informatics in Control, Au-
tomation and Robotics (Prague, Czech Republic, 29-
31 July, 2019), pages 284–291. Ed. INSTICC.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, San Diego, USA. Vol. II, pp. 886-893.
Do, H. N., Choi, J., Young Lim, C., and Maiti, T. (2018).
Appearance-based localization of mobile robots using
group lasso regression. Journal of Dynamic Systems,
Measurement, and Control, 140(9).
Dymczyk, M., Gilitschenski, I., Nieto, J., Lynen, S., Zeisl,
B., and Siegwart, R. (2018). Landmarkboost: Effi-
cient visualcontext classifiers for robust localization.
In 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 677–684.
Guo, J. and Gould, S. (2015). Deep cnn ensemble with
data augmentation for object detection. arXiv preprint
arXiv:1506.07224.
Han, D., Liu, Q., and Fan, W. (2018). A new image clas-
sification method using cnn transfer learning and web
data augmentation. Expert Systems with Applications,
95:43–56.
Korrapati, H. and Mezouar, Y. (2017). Multi-resolution
map building and loop closure with omnidirectional
images. Autonomous Robots, 41(4):967–987.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Lenz, I., Lee, H., and Saxena, A. (2015). Deep learning for
detecting robotic grasps. The International Journal of
Robotics Research, 34(4-5):705–724.
Liu, R., Zhang, J., Yin, K., Pan, Z., Lin, R., and Chen, S.
(2018). Absolute orientation and localization estima-
tion from an omnidirectional image. In Pacific Rim
International Conference on Artificial Intelligence,
pages 309–316. Springer.
Mancini, M., Bul
`
o, S. R., Ricci, E., and Caputo, B. (2017).
Learning deep nbnn representations for robust place
categorization. IEEE Robotics and Automation Let-
ters, 2(3):1794–1801.
Meattini, R., Benatti, S., Scarcia, U., De Gregorio, D.,
Benini, L., and Melchiorri, C. (2018). An semg-based
human–robot interface for robotic hands using ma-
chine learning and synergies. IEEE Transactions on
Components, Packaging and Manufacturing Technol-
ogy, 8(7):1149–1158.
Oliva, A. and Torralba, A. (2006). Building the gist of as-
cene: the role of global image features in recognition.
In Progress in Brain Reasearch: Special Issue on Vi-
sual Perception.Vol. 155.
Pak, M. and Kim, S. (2017). A review of deep learning in
image recognition. In 2017 4th international confer-
ence on computer applications and information pro-
cessing technology (CAIPT), pages 1–3. IEEE.
Pay
´
a, L., Gil, A., and Reinoso, O. (2017). A state-of-the-art
review on mapping and localization of mobile robots
using omnidirectional vision sensors. Journal of Sen-
sors, 2017.
Pay
´
a, L., Peidr
´
o, A., Amor
´
os, F., Valiente, D., and Reinoso,
O. (2018). Modeling environments hierarchically with
omnidirectional imaging and global-appearance de-
scriptors. Remote Sensing, 10(4):522.
Pronobis, A. and Caputo, B. (2009). COLD: COsy Lo-
calization Database. The International Journal of
Robotics Research (IJRR), 28(5):588–594.
Pronobis, A. and Jensfelt, P. (2011). Hierarchical multi-
modal place categorization. In ECMR, pages 159–
164.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Ullah, M. M., Pronobis, A., Caputo, B., Luo, J., and Jens-
felt, P. (2007). The cold database. Technical report,
Idiap.
Wozniak, P., Afrisal, H., Esparza, R. G., and Kwolek, B.
(2018). Scene recognition for indoor localization of
mobile robots using deep cnn. In International Con-
ference on Computer Vision and Graphics, pages 137–
147. Springer.
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva,
A. (2014). Learning deep features for scene recog-
nition using places database. In Advances in neural
information processing systems, pages 487–495.
Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A., Fei-
Fei, L., and Farhadi, A. (2017). Target-driven visual
navigation in indoor scenes using deep reinforcement
learning. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 3357–3364.
A Deep Learning Tool to Solve Localization in Mobile Autonomous Robotics
241