formation & Engineering Systems: Proc of the 22nd
Inter Conf, KES-2018, Belgrade, Serbia.
Ben M’barek, M., Borgi, A., Ben Hmida, S., and Rukoz,
M. (2019). Genetic algorithm to detect different
sizes’ communities from protein-protein interaction
networks. In Proc of the 14th Inter Conf on Software
Technologies - Volume 1: ICSOFT,, pages 359–370.
INSTICC, SciTePress.
Cai, Q., Ma, L., Gong, M., and Tian, D. (2016). A survey on
network community detection based on evolutionary
computation. Int. J. Bio-Inspired Comput., 8(2):84–
98.
Camon, E., Magrane, M., Barrell, D., Binns, D., Fleis-
chmann, W., Kersey, P., Mulder, N., Oinn, T., Maslen,
J., Cox, A., and Apweiler, R. (2003). The Gene
Ontology Annotation (GOA) Project: Implementa-
tion of GO in SWISS-PROT, TrEMBL, and InterPro.
Genome Res, 13(4):662–672.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE transactions on evolutionary compu-
tation, 6(2):182–197.
Fortunato, S. and Barth
´
elemy, M. (2007). Resolution limit
in community detection. PNAS, 104(1):36–41.
Fortunato, S. and Hric, D. (2016). Community detection in
networks: A user guide. Physics Reports, 659:1–44.
arXiv: 1608.00163.
Girvan, M. and Newman, M. E. J. (2002). Community
structure in social and biological networks. Proc. Natl.
Acad. Sci. U.S.A., 99(12):7821–7826.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition.
Goldberg, D. E. and Deb, K. (1991). A comparative anal-
ysis of selection schemes used in genetic algorithms.
In Foundations of Genetic Algorithms, pages 69–93.
Morgan Kaufmann.
Jiao, X., Sherman, B. T., Huang, D. W., Stephens, R.,
Baseler, M. W., Lane, H. C., and Lempicki, R. A.
(2012). DAVID-WS: a stateful web service to fa-
cilitate gene/protein list analysis. Bioinformatics,
28(13):1805–1806.
Kanehisa, M. and Goto, S. (2000). KEGG: kyoto ency-
clopedia of genes and genomes. Nucleic Acids Res.,
28(1):27–30.
Lancichinetti, A., Fortunato, S., and Kertesz, J. (2009).
Detecting the overlapping and hierarchical commu-
nity structure in complex networks. New journal of
physics, 11(3):033015.
Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., and Chen, L.
(2008). Quantitative function for community detec-
tion. Physical review E, 77(3):036109.
Liu, X., Li, D., Wang, S., and Tao, Z. (2007). Effective al-
gorithm for detecting community structure in complex
networks based on ga and clustering. In Inter Conf on
Computational Science, pages 657–664. Springer.
Mering, C. v., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P.,
and Snel, B. (2003). STRING: a database of predicted
functional associations between proteins. Nucl. Acids
Res., 31(1):258–261.
Newman, M. E. J. (2004). Fast algorithm for detecting
community structure in networks. Physical Review E,
69(6). arXiv: cond-mat/0309508.
Newman, M. E. J. and Girvan, M. (2004). Finding and eval-
uating community structure in networks. Physical Re-
view E, 69(2). arXiv: cond-mat/0308217.
Petrowski, A. and Ben-Hamida, S. (2017). Evolutionary
Algorithms. John Wiley & Sons. Google-Books-ID:
fvRRCgAAQBAJ.
Pizzuti, C. (2008). Ga-net: A genetic algorithm for commu-
nity detection in social networks. In Inter conf on par-
allel problem solving from nature, pages 1081–1090.
Springer.
Pizzuti, C. (2009). A multi-objective genetic algorithm for
community detection in networks. In 2009 21st IEEE
Inter Conf on Tools with Artificial Intelligence, pages
379–386. IEEE.
Pizzuti, C. (2011). A multiobjective genetic algorithm to
find communities in complex networks. IEEE Trans-
actions on Evolutionary Computation, 16(3):418–
430.
Pizzuti, C. (2018). Evolutionary Computation for Commu-
nity Detection in Networks: A Review. IEEE Transac-
tions on Evolutionary Computation, 22(3):464–483.
Pizzuti, C. and Rombo, S. E. (2014). Algorithms and
tools for protein–protein interaction networks cluster-
ing, with a special focus on population-based stochas-
tic methods. Bioinformatics, 30(10):1343–1352.
Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and
Parisi, D. (2004). Defining and identifying communi-
ties in networks. PNAS, 101(9):2658–2663.
Ruths, T., Ruths, D., and Nakhleh, L. (2009). GS2: an ef-
ficiently computable measure of GO-based similarity
of gene sets. Bioinformatics, 25(9):1178–1184.
Sherman, B. T., Huang, D. W., Tan, Q., Guo, Y., Bour, S.,
Liu, D., Stephens, R., Baseler, M. W., Lane, H. C.,
and Lempicki, R. A. (2007). DAVID Knowledge-
base: a gene-centered database integrating heteroge-
neous gene annotation resources to facilitate high-
throughput gene functional analysis. BMC Bioinfor-
matics, 8:426.
Shi, C., Yu, P. S., Cai, Y., Yan, Z., and Wu, B. (2011).
On selection of objective functions in multi-objective
community detection. In Proc of the 20th ACM in-
ternational conference on Information and knowledge
management, pages 2301–2304. ACM.
Shi, C., Yu, P. S., Yan, Z., Huang, Y., and Wang, B. (2014).
Comparison and selection of objective functions in
multiobjective community detection. Computational
Intelligence, 30(3):562–582.
Shi, C., Zhong, C., Yan, Z., Cai, Y., and Wu, B. (2010). A
multi-objective approach for community detection in
complex network. In IEEE Congress on Evolutionary
Computation, pages 1–8. IEEE.
Tasgin, M. and Bingol, H. (2006). Community Detec-
tion in Complex Networks using Genetic Algorithm.
arXiv:cond-mat/0604419. arXiv: cond-mat/0604419.
Tasgin, M., Herdagdelen, A., and Bingol, H. (2007). Com-
munity Detection in Complex Networks Using Ge-
netic Algorithms. arXiv:0711.0491 [physics]. arXiv:
0711.0491.
ICSOFT 2020 - 15th International Conference on Software Technologies
306