REFERENCES
Alam, M. N., Garg, A., Munia, T. T. K., Fazel-Rezai, R.,
and Tavakolian, K. (2017). Vertical ground reaction
force marker for parkinson’s disease. PLOS One,
12(5):p.e0175951.
Beauchet, O., Annweiler, C., Dubost, V., and Allali, G.
(2009). Stops walking when talking: A predictor of
falls in older adults? European Journal of Neurology,
16(7):786–795.
Ben-Hur, A. and Weston, J. (2010). A user’s guide to sup-
port vector machines. In Carugo, O. and Eisenhaber,
F., editors, Data Mining Techniques for the Life Sci-
ences, pages 223–239. Humana Press.
Chao, Y., Laughman, R., Schneider, E., and Stauffer, R.
(1983). Normative data of knee joint motion and
ground reaction forces in adult level walking. Jour-
nal of Biomechanics, 16(3):219–233.
Fukuchi, C. A., Fukuchi, R. K., and Duarte, M. (2018).
A public dataset of overground and treadmill walking
kinematics and kinetics in healthy individuals. PeerJ,
6:e4640.
Fukuchi, C. A., Fukuchi, R. K., and Duarte, M. (2019). Ef-
fects of walking speed on gait biomechanics in healthy
participants: a systematic review and meta-analysis.
Systematic Reviews, 8(1):153.
Gobble, D. J., Marino, W. G., and Potvin, J. R. (2003). The
influence of horizontal velocity on interlimb symme-
try in normal walking. Human Movement Science,
22(3):271–283.
Halilaj, E., Rajagopal, A., Fiterau, M., Hicks, J. L., Hastie,
T. J., and Delp, S. L. (2018). Machine learning in
human movement biomechanics. Journal of biome-
chanics, 81:1–11.
Hamill, J., Bates, B. T., and M.Knutzen, K. (1984). Ground
reaction force symmetry during walking and run-
ning. Research Quarterly for Exercise and Sport,
55(3):289–293.
Hannah, R., Morrison, J., and Chapman, A. (1984). Kine-
matic symmetry of the lower limbs. Archives of phys-
ical medicine and rehabilitation, 65(4):155–158.
Hastie, T., Tibshirani, R., Witten, D., and James, G. (2013).
An Introduction to Statistical Learning: With Applica-
tions in R. Springer.
Inman, V. and Eberhart, H. (1953). The major determinants
in normal and pathological gait. The Journal of Bone
& Joint Surgery, 35(3):543–558.
Kutilek, P., Viteckova, S., Svoboda, Z., and Socha, V.
(2014). Kinematic quantification of gait asymmetry
based on characteristics of angle-angle diagrams. Acta
Polytechnica Hungarica, 11(5):25–28.
Lewek, M., Bradley, C. E., Wutzke, C., and Zinder, S. M.
(2014). The relationship between spatiotemporal gait
asymmetry and balance in individuals with chronic
stroke. Journal of Applied Biomechanics, 30(1):31–
36.
Mezghani, N., Dunbar, M. J., Ouakrim, Y., and Fuentes, A.
(2016). Biomechanical signal classification of surgi-
cal and non-surgical candidates for knee arthroplasty.
In 2016 International Symposium on Signal, Image,
Video and Communications, pages 287–290.
Muro, A., Zapirain, B. G., and Mendez-Zorrilla, A. (2014).
Gait analysis methods: An overview of wearable and
non-wearable systems, highlighting clinical applica-
tions. Sensors, 14(2):3362–3394.
Robinson, R. H., Herzog, W., and Nigg, B. M. (1987). Use
of force platform variables to quantify the effects of
chiropractic manipulation on gait symmetry. Jour-
nal of Manipulative and Physiological Therapeutics,
10(4):172–176.
Sadeghi, H., Allard, P., Prince, F., and Labelle, H. (2000).
Symmetry and limb dominance in able-bodied gait: a
review. Gait & Posture, 12(1):34–45.
Salazar, A. J., Cuevas, O. C. D. C., and Bravo, R. J. (2004).
Novel approach for spastic hemiplegia classification
through the use of support vector machines. In The
26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages
466–469.
Schlafly, M., Yilmaz, Y., and Reed, K. B. (2019). Feature
selection in gait classification of leg length and distal
mass. Informatics in Medicine Unlocked, 15:100163.
Vaughan, C. L., Davis, B. L., and O’Connor, J. C. (1992).
Dynamics of human gait. Human Kinetics Publishers.
Velten, K. (2009). Mathematical Modeling and Simulation:
Introduction for Scientists and Engineers. John Wiley
& Sons.
Verghese, J., Wang, C., Lipton, R., and Holtzer, R. (2007).
Quantitative gaitdysfunction and risk of cognitive de-
cline and dementia. Journal of neurology, neuro-
surgery, and psychiatry, 78(9):929–935.
Viteckova, S., Kutilek, P., Svoboda, Z., and Krupicka, R.
(2018). Gait symmetry measures: A review of cur-
rent and prospective methods. Journal of the Indian
Medical Association, 42:89–100.
Wu, J. and Wu, B. (2015). The novel quantitative technique
for assessment of gait symmetry using advanced sta-
tistical learning algorithm. BioMed Research Interna-
tional, 2015(528971).
Zhang, J., Zhang, K., Feng, J., and Small, M. (2010).
Rhythmic dynamics and synchronization via dimen-
sionality reduction: application to human gait. PLOS
Computational Biology, 6(12):p.e1001033.
DATA 2020 - 9th International Conference on Data Science, Technology and Applications
176