of the National Academy of Sciences, 113(39), 10729-
10732. doi:10.1073/pnas.1614023113
George, A. (2018). Business analytics: The essentials of
data-driven decision-making. Retrieved from
https://www.zdnet.com/article/business-analytics-the-
essentials-of-data-driven-decision-making/
Geospatial World. (2018). Asia Geospatial Awards 2017
winners announced at GeoSmart Asia. Retrieved from
https://www.geospatialworld.net/news/asia-geospatial-
awards-2017-winners-announced/
Golfam, P., Ashofteh, P. S., Rajaee, T., & Chu, X. F.
(2019). Prioritization of Water Allocation for
Adaptation to Climate Change Using Multi-Criteria
Decision Making (MCDM). Water Resources
Management, 33(10), 3401-3416. doi:10.1007/s11269-
019-02307-7
Hagerty, J. (2016). 2017 Planning Guide for Data and
Analytics. Retrieved from https://www.gartner.com/en/
documents/3471553/2017-planning-guide-for-data-
and-analytics
Hassani, H., Huang, X., & Silva, E. (2019). Big Data and
Climate Change. Big Data and Cognitive Computing,
3(1). doi:10.3390/bdcc3010012
Ideris, M., Abdullah, M. F., Mat Amin, M. Z., & Zainol, Z.
(2018). Big Data Analytics Technology for Water Risk
Assessment and Management. Retrieved from New
Delhi, India:
Kaisler, S., Armour, F., Espinosa, J. A., & Money, W.
(2013). Big data: Issues and challenges moving
forward. Paper presented at the 2013 46th Hawaii
International Conference on System Sciences.
Karamouz, M., Zeynolabedin, A., & Olyaei, M. A. (2015).
Mapping Regional Drought Vulnerability: A Case
Study. In H. Arefi & M. Motagh (Eds.), International
Conference on Sensors & Models in Remote Sensing &
Photogrammetry (Vol. 41, pp. 369-377). Gottingen:
Copernicus Gesellschaft Mbh.
Lee, G., Choi, J., & Jun, K. S. (2017). MCDM Approach
for Identifying Urban Flood Vulnerability under Social
Environment and Climate Change. Journal of Coastal
Research, 209-213. doi:10.2112/si79-043.1
Levy, J. K. (2005). Multiple criteria decision making and
decision support systems for flood risk management.
Stochastic Environmental Research and Risk
Assessment, 19(6), 438-447.
Liu, D., & Stewart, T. J. (2004). Integrated object-oriented
framework for MCDM and DSS modelling. Decision
Support Systems, 38(3), 421-434.
Lokers, R., Knapen, R., Janssen, S., van Randen, Y., &
Jansen, J. (2016). Analysis of Big Data technologies for
use in agro-environmental science. Environmental
Modelling & Software, 84, 494-504.
Lopez, D., & Manogaran, G. (2016). Big data architecture
for climate change and disease dynamics. The human
element of big data: issues, analytics, and performance,
301-331.
Mardani, A., Jusoh, A., Zavadskas, E. K., Cavallaro, F., &
Khalifah, Z. (2015). Sustainable and Renewable
Energy: An Overview of the Application of Multiple
Criteria Decision Making Techniques and Approaches.
Sustainability, 7(10), 13947-13984.
doi:10.3390/su71013947
Mark, S. (2016). 5 Key Elements Of Analytics To Consider.
In (Vol. 2020).
Mat Amin, M. Z. (2016). Applying Big Data Analytics
(BDA) to Diagnose Hydrometeorlogical related risk
due to Climate Change. Paper presented at the GEO
Smart Asia 2016, Putrajaya, Malaysia.
Mensour, O. N., El Ghazzani, B., Hlimi, B., & Ihlal, A.
(2019). A geographical information system-based
multi-criteria method for the evaluation of solar farms
locations: A case study in Souss-Massa area, southern
Morocco. Energy, 182, 900-919. doi:10.1016/j.energy.
2019.06.063
Meulen, R. v. d., & Rivera, J. (2014). Gartner Says
Advanced Analytics Is a Top Business Priority.
Retrieved from https://www.gartner.com/en/newsroom/
press-releases/2014-10-21-gartner-says-advanced-
analytics-is-a-top-business-priority
Mohamed, A., Mat Amin, M. Z., Md Adnan, N. H., &
Abdullah, M. F. (2018). Projected Hydroclimate Data
Analysis using Big Data Analytics (BDA) Technology
for Smart and Resilient City. Paper presented at the
Smart Cities: Re-Imaging Smart Solutions in Today's
Digital Age Kuala Lumpur, Malaysia.
Pohekar, S., & Ramachandran, M. (2004). Application of
multi-criteria decision making to sustainable energy
planning—A review. Renewable and sustainable
energy reviews, 8(4), 365-381.
Rahman, M. S., Di, L., & Esraz-Ul-Zannat, M. (2017). The
role of big data in disaster management Paper
presented at the Proceedings, International Conference
on Disaster Risk Mitigation.
Ramya, S., & Devadas, V. (2019). Integration of GIS, AHP
and TOPSIS in evaluating suitable locations for
industrial development: A case of Tehri Garhwal
district, Uttarakhand, India. Journal of Cleaner
Production, 238. doi:10.1016/j.jclepro.2019.117872
S, A. (2017). An Overview of Big Data Applications in
Water Resources Engineering. 2, 10-18. doi:10.11648/
j.mlr.20170201.12
Simsek, Y., Watts, D., & Escobar, R. (2018). Sustainability
evaluation of Concentrated Solar Power (CSP) projects
under Clean Development Mechanism (CDM) by using
Multi Criteria Decision Method (MCDM). Renewable
& Sustainable Energy Reviews, 93, 421-438.
doi:10.1016/j.rser.2018.04.090
Singh, H. (2018). Using Analytics for Better Decision-Making.
Retrieved from https://towardsdatascience.com/using-
analytics-for-better-decision-making-ce4f92c4a025
Song, J. Y., & Chung, E. S. (2016). Robustness,
Uncertainty and Sensitivity Analyses of the TOPSIS
Method for Quantitative Climate Change Vulnerability:
a Case Study of Flood Damage. Water Resources
Management, 30(13), 4751-4771. doi:10.1007/s11269-
016-1451-2
Umm e, H., Asghar, S., & Ieee. (2009). A Survey on Multi-
Criteria Decision Making Approaches.
Yang, C., Su, G., & Chen, J. (2017, 10-12 March 2017).
Using big data to enhance crisis response and disaster