accurate and argumentative features can further
improve the results of automatic essay scoring. Also,
it is possible for these systems to provide feedback
in addition to the score. We also intend to increase
the amount of texts to mark. For this experiment, we
used 50 essays. We believe that with a bigger
amount of tagged texts results could be improved.
REFERENCES
Almeida Junior, C. R. C. de, Spalenza, M. A., Oliveira, E.,
2017. Proposal of a System for Automatic Evaluation
of ENEM Essays Using Machine Learning Techniques
and Natural Language Processing. Computer on the
Beach - COTB. Florianópolis: Univali. In Portuguese.
Batista, G., Prati, R.C. and Monard, M.C., 2004. A study
of the behavior of several methods for balancing
machine learning training data. ACM SIGKDD Explor.
Newslett., 6(1):20–29, 2004.
Bird, S., Klein, E., & Loper, E. (2009). Natural Language
Processing with Python. O′Reilly.
BRASIL. (2018). Redação 2018: Cartilha do Participante.
http://download.inep.gov.br/educacao_basica/enem/gu
ia_participante/2018/manual_de_redacao_do_enem_2
018.pdf
Chawla, N. V., Bowyer, K. W., Hall, L. O., Kegelmeyer,
W. P., 2011. SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence
Research, 16:321–357.
Dias da Silva, B. C., 1996. A face tecnológica dos estudos
da linguagem: o processamento automático das
línguas naturais. UNESP.
Florão, M., 2017. Como a Computação Cognitiva pode
Revolucionar a Justiça Brasileira. Computação
Cognitiva e a Humanização Das Máquinas.
https://www.prodemge.gov.br/images/com_arismartbo
ok/download/19/revista_17.pdf
Fonseca, E. R., Rosa, J. L. G., 2013. A two-step
convolutional neural network approach for semantic
role labeling. IJCNN, 1–7.
Friedman, J. H., 2001. Greedy Function Approximation: A
Gradient Boosting Machine. The Annals of Statistics,
29(5):1189–1232.
Geron, A., 2017. Hands–On Machine Learning with
Scikit–Learn and TensorFlow. O′Reilly.
Ghosh, D., Khanam, A., Han, Y., Muresan, S., 2016.
Coarse-grained Argumentation Features for Scoring
Persuasive Essays. Proceedings of the 54th Annual
Meeting of the ACL, 2, 549–554.
Gonçalves, F. de C., 2011. Language and genre in
argumentative-dissertational essays: a systemic
functional approach (Pontifical Catholic University of
São Paulo).
Haendchen Filho, A., Sartori, S., Prado, H. A., Ferneda,
E., Koehntopp, P. I. (2019) An Evaluation Model for
Dynamic Motivational Analysis. ICEIS, 1. p. 446-453.
He, H., Bai, Y., Garcia, E. A., Li, S., 2008. ADASYN:
Adaptive synthetic sampling approach for imbalanced
learning. IEEE IJCNN, 1322–1328.
Huyck, C., Orengo, V., 2001. A Stemming Algorithm for
the Portuguese Language. 8th SPIRE, 1, 183–193.
Johnson, R. H., Blair, J. A., 1994. Logical Self-Defense.
International Debate Education Association.
Knerr, S., Personnaz, L., Dreyfus, G., 1990. Single-layer
learning revisited: a stepwise procedure for building
and training a neural network. In Neurocomputing
Springer, p. 41–50.
Krippendorff, K., 2004. Measuring the Reliability of
Qualitative Text Analysis Data. Quality & Quantity,
38(6):787–800.
Lira, M. M. R. de, 2009. Alfabetização Científica e
Argumentação Escrita nas Aulas de Ciências
Naturais: Pontos e Contrapontos. UFPE.
Nguyen, H., Litman, D., 2015. Extracting Argument and
Domain Words for Identifying Argument Components
in Texts. Workshop on Argumentation Mining, 2., 22–
28.
Nguyen, H., Litman, D., 2016. Improving Argument
Mining in Student Essays by Learning and Exploiting
Argument Indicators versus Essay Topics. FLAIRS,
29, 485–490. AAAI Press.
Nguyen, H. V., Litman, D. J., 2018. Argument mining for
improving the automated scoring of persuasive essays.
32nd AAAI, 5892–5899.
Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J.,
Napolitano, A., 2008. Building useful models from
imbalanced data with sampling and boosting. FLAIRS-
21, 306–311.
Stab, C., Gurevych, I., 2014. Identifying Argumentative
Discourse Structures in Persuasive Essays. EMNLP,
46–56.
Stab, C., Gurevych, I., 2017. Parsing Argumentation
Structures in Persuasive Essays. Computational
Linguistics, 43(3):619–659.
Stede, M., Schneider, J., 2018. Argumentation Mining.
Synthesis Lectures on Human Language Technologies,
11(2):1–191.
Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., Tsujii, J., 2012. brat: a Web-based Tool for NLP-
Assisted Text Annotation. 13th Conference of the
EACL, 102–107.
Walton, D., 2009. Argumentation in Artificial
Intelligence. In G. Simari & I. Rahwan (Eds.),
Argumentation in Artificial Intelligence.
Yap, B. W. et al, 2014. An Application of Oversampling,
Undersampling, Bagging and Boosting in Handling
Imbalanced Datasets. 1
st
Int. Conf. on Advanced Data
and Information Engineering, 285.
An Approach to Assess the Existence of a Proposed Intervention in Essay-argumentative Texts
673