Xu, Z. B., & Cao, F. L. (2005). Simultaneous Lp-
approximation order for neural networks. Neural
Networks, 18(7), 914-923.
Miao, B. T., & Chen, F. L. (2001). Applications of radius
basis function neural networks in scattered data
interpolation. Journal-China University Of Science
And Technology, 31(2), 135-142.
Kreinovich, V. Y. (1991). Arbitrary nonlinearity is
sufficient to represent all functions by neural networks:
a theorem. Neural networks, 4(3), 381-383.
Han, X., &Hou, M. (2008, April). Quasi-interpolation for
data fitting by the radial basis functions.
In International Conference on Geometric Modeling
and Processing (pp. 541-547). Springer, Berlin,
Heidelberg.
Huang, G. B., & Chen, L. (2008). Enhanced random search
based incremental extreme learning
machine. Neurocomputing, 71(16-18), 3460-3468.
Mai-Duy, N., &Tran-Cong, T. (2003). Approximation of
function and its derivatives using radial basis function
networks. Applied Mathematical
Modelling, 27(3),197-220.
Mulero-Martinez, J. I. (2008). Best approximation of
Gaussian neural networks with nodes uniformly
spaced. IEEE transactions on neural networks, 19(2),
284-298.
Ferrari, S., Maggioni, M., & Borghese, N. A. (2004).
Multiscale approximation with hierarchical radial basis
functions networks. IEEE Transactions on Neural
Networks, 15(1), 178-188.
Hwang, J. N., Lay, S. R., &Lippman, A. (1994).
Nonparametric multivariate density estimation: a
comparative study. IEEE Transactions on Signal
Processing, 42(10), 2795-2810.
Lin, C. J. (2006). Wavelet neural networks with a hybrid
learning approach. Journal of information science and
engineering, 22(6), 1367-1387.
Eftekhari, M., & Bazoobandi, H. A. (2014). A differential
evolution and spatial distribution based local search for
training fuzzy wavelet neural network. International
Journal of Engineering, 27(8), 1185-1194.
Bazoobandi, H. A., & Eftekhari, M. (2015). A fuzzy based
memetic algorithm for tuning fuzzy wavelet neural
network parameters. Journal of Intelligent & Fuzzy
Systems, 29(1), 241-252.
Ganjefar, S., & Tofighi, M. (2015). Single-hidden-layer
fuzzy recurrent wavelet neural network: Applications to
function approximation and system
identification. Information Sciences, 294, 269-285.
Tzeng, S. T. (2010). Design of fuzzy wavelet neural
networks using the GA approach for function
approximation and system identification. Fuzzy Sets
and Systems, 161(19), 2585-2596.
Abiyev, R. H., & Kaynak, O. (2008). Fuzzy wavelet neural
networks for identification and control of dynamic
plants—a novel structure and a comparative
study. IEEE transactions on industrial
electronics, 55(8), 3133-3140.
Chen, J., & Bruns, D. D. (1995). Wave ARX neural network
development for system identification using a
systematic design synthesis. Industrial & engineering
chemistry research, 34(12), 4420-4435.
Zhang, Q., & Benveniste, A. (1992). Wavelet
networks. IEEE transactions on Neural Networks, 3(6),
889-898.
Yao, S., Wei, C. J., & He, Z. Y. (1996). Evolving wavelet
neural networks for function
approximation. Electronics Letters, 32(4), 360.
Tzeng, S. T. (2010). Design of fuzzy wavelet neural
networks using the GA approach for function
approximation and system identification. Fuzzy Sets
and Systems, 161(19), 2585-2596.
Karamodin, A., Haji Kazemi, H., &Hashemi, S. M. A.
(2015). Verification of an evolutionary-based wavelet
neural network model for nonlinear function
approximation. International Journal of
Engineering, 28(10), 1423-1429.
Ganjefar, S., & Tofighi, M. (2015). Single-hidden-layer
fuzzy recurrent wavelet neural network: Applications to
function approximation and system
identification. Information Sciences, 294, 269-285.
Schmidt, W. F., Kraaijveld, M. A., & Duin, R. P. (1992,
August). Feed forward neural networks with random
weights. In International Conference on Pattern
Recognition (pp. 1-1). IEEE Computer Society Press.
Pao, Y. H., & Takefuji, Y. (1992). Functional-link net
computing: theory, system architecture, and
functionalities. Computer, 25(5), 76-79.
Pao, Y. H., Park, G. H., & Sobajic, D. J. (1994). Learning
and generalization characteristics of the random vector
functional-link net. Neurocomputing, 6(2), 163-180.
McLoone, S., Brown, M. D., Irwin, G., & Lightbody, A.
(1998). A hybrid linear/nonlinear training algorithm for
feedforward neural networks. IEEE Transactions on
Neural Networks, 9(4), 669-684.
Huang, G. B., Zhu, Q. Y., &Siew, C. K. (2006). Extreme
learning machine: theory and
applications. Neurocomputing, 70(1-3), 489-501.
Igelnik, B., &Pao, Y. H. (1995). Stochastic choice of basis
functions in adaptive function approximation and the
functional-link net. IEEE Transactions on Neural
Networks, 6(6), 1320-1329.
Zhang, Q., & Benveniste, A. (1992). Wavelet
networks. IEEE transactions on Neural Networks, 3(6),
889-898.
Dakhli, A., Bellil, W., &Ben Amar, C. (2016, November).
DNA Sequence Classification Using Power Spectrum
and Wavelet Neural Network. In International
Conference on Hybrid Intelligent Systems (pp. 391-
402). Springer, Cham.
Zhang, Q. (1997). Using wavelet network in nonparametric
estimation. IEEE Transactions on Neural
networks, 8(2), 227-236.
Dakhli, A., & Bellil, W., Ben Amar, C. (2016). Wavelet
neural networks for DNA sequence classification using
the genetic algorithms and the least trimmed
square. Procedia Computer Science, 96, 418-427.
Daubechies, I. (1992). Ten lectures on wavelets (Vol. 61).
Siam.