ACKNOWLEDGEMENTS
This work has been partially supported by MIUR -
SecureOpenNets and EU SPARTA contract 830892,
CyberSANE projects, and the EU project CyberSure
734815.
REFERENCES
Agarap, A. F. (2017). Towards building an intelligent anti-
malware system: a deep learning approach using sup-
port vector machine (svm) for malware classification.
arXiv preprint arXiv:1801.00318.
Aha, D. W., Kibler, D., and Albert, M. K. (1991).
Instance-based learning algorithms. Machine learn-
ing, 6(1):37–66.
Akarsh, S., Simran, K., Poornachandran, P., Menon, V. K.,
and Soman, K. (2019). Deep learning framework
and visualization for malware classification. In 2019
5th International Conference on Advanced Computing
& Communication Systems (ICACCS), pages 1059–
1063. IEEE.
Amato, F., Di Martino, B., Marulli, F., and Moscato, F.
(2018). A federation of cognitive cloud services for
trusting data sources. In Conference on Complex,
Intelligent, and Software Intensive Systems, pages
1022–1031. Springer.
Argus Cyber Security Lab (2020). Android malware
dataset. https://amd.arguslab.org. Accessed: 26-02-
2020.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Canfora, G., Martinelli, F., Mercaldo, F., Nardone, V., San-
tone, A., and Visaggio, C. A. (2018). Leila: formal
tool for identifying mobile malicious behaviour. IEEE
Transactions on Software Engineering, 45(12):1230–
1252.
Casolare, R., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). A model checking based proposal for mo-
bile colluding attack detection. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pages
5998–6000. IEEE.
Cieplinski, L. (2001). Mpeg-7 color descriptors and their
applications. In International Conference on Com-
puter Analysis of Images and Patterns, pages 11–20.
Springer.
Cimino, M. G., De Francesco, N., Mercaldo, F., San-
tone, A., and Vaglini, G. (2020). Model checking
for malicious family detection and phylogenetic anal-
ysis in mobile environment. Computers & Security,
90:101691.
Iadarola, G., Martinelli, F., Mercaldo, F., and Santone, A.
(2019). Formal methods for android banking malware
analysis and detection. In 2019 Sixth International
Conference on Internet of Things: Systems, Manage-
ment and Security (IOTSMS), pages 331–336. IEEE.
Kabanga, E. K. and Kim, C. H. (2017). Malware im-
ages classification using convolutional neural net-
work. Journal of Computer and Communications,
6(1):153–158.
Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D.,
Wang, Y., and Iqbal, F. (2018). Malware classification
with deep convolutional neural networks. In 2018 9th
IFIP International Conference on New Technologies,
Mobility and Security (NTMS), pages 1–5. IEEE.
Kasutani, E. and Yamada, A. (2001). The mpeg-7 color
layout descriptor: a compact image feature descrip-
tion for high-speed image/video segment retrieval. In
Proceedings 2001 International Conference on Image
Processing (Cat. No. 01CH37205), volume 1, pages
674–677. IEEE.
Kohavi, R. (1995). The power of decision tables. In Euro-
pean conference on machine learning, pages 174–189.
Springer.
Marulli, F. and Mercaldo, F. (2017). Let’s gossip: Exploring
malware zero-day time windows by social network
analysis. In 2017 31st International Conference on
Advanced Information Networking and Applications
Workshops (WAINA), pages 704–709. IEEE.
Marulli, F. and Visaggio, C. A. (2019). Adversarial deep
learning for energy management in buildings. In Pro-
ceedings of the 2019 Summer Simulation Conference,
page 50. Society for Computer Simulation Interna-
tional.
McLaughlin, N., Martinez del Rincon, J., Kang, B., Yer-
ima, S., Miller, P., Sezer, S., Safaei, Y., Trickel, E.,
Zhao, Z., Doup
´
e, A., et al. (2017). Deep android mal-
ware detection. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and
Privacy, pages 301–308.
Mercaldo, F. and Santone, A. Deep learning for image-
based mobile malware detection. Journal of Computer
Virology and Hacking Techniques, pages 1–15.
Movellan, J. R. (2002). Tutorial on gabor filters. Open
Source Document.
Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B.
(2011). Malware images: visualization and automatic
classification. In Proceedings of the 8th international
symposium on visualization for cyber security, pages
1–7.
Ni, S., Qian, Q., and Zhang, R. (2018). Malware identifi-
cation using visualization images and deep learning.
Computers & Security, 77:871–885.
Oliva, A. and Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International journal of computer vision,
42(3):145–175.
Pota, M., Marulli, F., Esposito, M., De Pietro, G., and
Fujita, H. (2019). Multilingual pos tagging by a
composite deep architecture based on character-level
features and on-the-fly enriched word embeddings.
Knowledge-Based Systems, 164:309–323.
Quinlan, J. R. (2014). C4. 5: programs for machine learn-
ing. Elsevier.
StatCounter (2020). Mobile operating system mar-
ket share worldwide. https://gs.statcounter.com/
os-market-share/mobile/worldwide. Accessed: 01-
03-2020.
Image-based Malware Family Detection: An Assessment between Feature Extraction and Classification Techniques
505