-0.45
-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
(a)
-20
-15
-10
-5
0
5
10
15
20
0 0.2 0.4 0.6 0.8 1
(b)
Figure 6: In (a) the solution q of Test 3, in (b) the related
signed curvature κ(s) (bold line) and curvature constraints
±
¯
ω (thin lines).
REFERENCES
Bobrow, J. E., Dubowsky, S., and Gibson, J. (1983). On the
optimal control of robotic manipulators with actuator
constraints. In 1983 American Control Conference,
pages 782–787. IEEE.
Cacace, S., Lai, A. C., and Loreti, P. (2019). Control strate-
gies for an octopus-like soft manipulator. In 2019
- Proceedings of the 16th International Conference
on Informatics in Control, Automation and Robotics
(ICINCO), volume 1, pages 82–90. IEEE.
Cacace, S., Lai, A. C., and Loreti, P. (2020a). Modeling and
optimal control of an octopus tentacle. SIAM Journal
on Control and Optimization, 58(1):59–84.
Cacace, S., Lai, A. C., and Loreti, P. (2020b). Opti-
mal reachability and grasping for a soft manipulator.
preprint, arXiv 2002.05476.
Chirikjian, G. S. (1994). Hyper-redundant manipulator
dynamics: A continuum approximation. Advanced
Robotics, 9(3):217–243.
Chirikjian, G. S. and Burdick, J. W. (1990). An obstacle
avoidance algorithm for hyper-redundant manipula-
tors. In Proceedings., IEEE International Conference
on Robotics and Automation, pages 625–631. IEEE.
Jones, B. A. and Walker, I. D. (2006). Kinematics for mul-
tisection continuum robots. IEEE Transactions on
Robotics, 22(1):43–55.
Kang, R., Kazakidi, A., Guglielmino, E., Branson, D. T.,
Tsakiris, D. P., Ekaterinaris, J. A., and Caldwell,
D. G. (2011). Dynamic model of a hyper-redundant,
octopus-like manipulator for underwater applications.
In Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pages 4054–
4059. IEEE.
Lai, A. C. (2012). Geometrical aspects of expansions
in complex bases. Acta Mathematica Hungarica,
136(4):275–300.
Lai, A. C. and Loreti, P. (2014). Robot’s hand and expan-
sions in non-integer bases. Discrete Mathematics &
Theoretical Computer Science, 16(1).
Lai, A. C. and Loreti, P. (2015). Self-similar control sys-
tems and applications to zygodactyl bird’s foot. Netw.
Heterog. Media, 10(2):401–419.
Lai, A. C., Loreti, P., and Vellucci, P. (2016). A Fibonacci
control system with application to hyper-redundant
manipulators. Mathematics of Control, Signals, and
Systems, 28(2):15.
Laschi, C. and Cianchetti, M. (2014). Soft robotics: new
perspectives for robot bodyware and control. Frontiers
in Bioengineering and Biotechnology, 2:3.
Laschi, C., Cianchetti, M., Mazzolai, B., Margheri, L., Fol-
lador, M., and Dario, P. (2012). Soft robot arm in-
spired by the octopus. Advanced Robotics, 26(7):709–
727.
Michalak, K., Filipiak, P., and Lipinski, P. (2014). Multi-
objective dynamic constrained evolutionary algorithm
for control of a multi-segment articulated manipulator.
In International Conference on Intelligent Data En-
gineering and Automated Learning, pages 199–206.
Springer.
Rus, D. and Tolley, M. T. (2015). Design, fabrication and
control of soft robots. Nature, 521(7553):467–475.
Tak
´
acs,
´
A., Kov
´
acs, L., Rudas, I., Precup, R.-E., and
Haidegger, T. (2015). Models for force control in
telesurgical robot systems. Acta Polytechnica Hun-
garica, 12(8):95–114.
Thuruthel, G. T., Ansari, Y., Falotico, E., and Laschi, C.
(2018). Control strategies for soft robotic manipula-
tors: A survey. Soft robotics, 5(2):149–163.
Wang, B., Wang, J., Zhang, L., Zhang, B., and Li, X.
(2016). Cooperative control of heterogeneous uncer-
tain dynamical networks: An adaptive explicit syn-
chronization framework. IEEE transactions on cyber-
netics, 47(6):1484–1495.
Optimal Reachability with Obstacle Avoidance for Hyper-redundant and Soft Manipulators
141