Table 13: Performance results for Test 7 set using combined
approach.
option max mean median
n
i
= 20, n
e
= 10 89 38.70 39
n
i
= 4, n
e
= 1 96 39.30 39
best 89 35.51 35
Table 14: Performance results for Test 8 set using combined
approach.
option max mean median
n
i
= 20, n
e
= 10 281 126.14 125
n
i
= 4, n
e
= 1 290 128.08 127
best 280 114.29 114
Based on the numerical experience, the following
findings are summarized:
• The explicit approach is bad for numerical rea-
sons.
• Purely implicit or purely semi-explicit approach
is prone to slow convergence or lack thereof.
• Good convergence is obtained when implicit ap-
proach is used by default with semi-explicit ap-
proach invoked temporarily when lack of conver-
gence is detected.
• The semi-implicit approach uses the eigenvalues
of the trailing 2×2 subproblem to select the shifts.
• When these eigenvalues are real, a good shift se-
lection rule is to set a double shift σ
1
= σ
2
= λ
c
,
where λ
c
is the closest eigenvalue to the last ele-
ment of the product for the current subproblem.
REFERENCES
Ahues, M., Tisseur, F. (1997). A New Deflation Criterion
for the QR Algorithm. LAPACK Working Note 122,
UT-CS-97-353.
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Ham-
marling, S., McKenney, A., and Sorensen, D. (1999).
LAPACK Users’ Guide: Third Edition. Software · En-
vironments · Tools. SIAM, Philadelphia.
Apkarian, P., Gahinet, P. M., and Buhr, C. (2014). Multi-
model, multi-objective tuning of fixed-structure con-
trollers. In Proceedings 13th European Control Con-
ference (ECC), 24–27 June 2014, Strasbourg, France,
pages 856–861. IEEE.
Benner, P., Byers, R., Losse, P., Mehrmann, V., and
Xu, H. (2007). Numerical solution of real skew-
Hamiltonian/Hamiltonian eigenproblems. Technical
report, Technische Universit
¨
at Chemnitz, Chemnitz.
Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002).
Numerical computation of deflating subspaces of
skew Hamiltonian/Hamiltonian pencils. SIAM J. Ma-
trix Anal. Appl., 24(1):165–190.
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
Varga, A. (1999). SLICOT — A subroutine library
in systems and control theory. In Datta, B. N., ed-
itor, Applied and Computational Control, Signals,
and Circuits, volume 1, chapter 10, pages 499–539.
Birkh
¨
auser, Boston, MA.
Benner, P., Sima, V., and Voigt, M. (2012a). L
∞
-norm com-
putation for continuous-time descriptor systems us-
ing structured matrix pencils. IEEE Trans. Automat.
Contr., AC-57(1):233–238.
Benner, P., Sima, V., and Voigt, M. (2012b). Robust and
efficient algorithms for L
∞
-norm computations for de-
scriptor systems. In Bendtsen, J. D., editor, 7th IFAC
Symposium on Robust Control Design (ROCOND’12),
pages 189–194. IFAC.
Benner, P., Sima, V., and Voigt, M. (2013). FOR-
TRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems. Part I: Al-
gorithms and applications. SLICOT Working Note
2013-1. Available from www.slicot.org.
Benner, P., Sima, V., and Voigt, M. (2016). Al-
gorithm 961: Fortran 77 subroutines for the so-
lution of skew-Hamiltonian/Hamiltonian eigenprob-
lems. ACM Transactions on Mathematical Software
(TOMS), 42(3):1–26.
Bojanczyk, A. W., Golub, G., and Van Dooren, P. (1992).
The periodic Schur decomposition: Algorithms and
applications. In Luk, F. T., editor, Proc. of the SPIE
Conference Advanced Signal Processing Algorithms,
Architectures, and Implementations III, volume 1770,
pages 31–42.
Bruinsma, N. A. and Steinbuch, M. (1990). A fast algo-
rithm to compute the H
∞
-norm of a transfer function.
Systems Control Lett., 14(4):287–293.
Golub, G. H. and Van Loan, C. F. (2013). Matrix Computa-
tions. The Johns Hopkins University Press, Baltimore,
Maryland, fourth edition.
Kressner, D. (2001). An efficient and reliable implemen-
tation of the periodic QZ algorithm. In IFAC Pro-
ceedings Volumes (IFAC Workshop on Periodic Con-
trol Systems), volume 34, pages 183–188.
Kressner, D. (2005). Numerical Methods for General and
Structured Eigenvalue Problems, volume 46 of Lec-
ture Notes in Computational Science and Engineer-
ing. Springer-Verlag, Berlin.
MathWorks
R
(2012). Control System Toolbox
TM
, Release
R2012a.
Sima, V. (2019). Computation of initial transformation
for implicit double step in the periodic QZ algo-
rithm. In Precup, R.-E., editor, Proceedings of the
2019 23th International Conference on System The-
ory, Control and Computing (ICSTCC), 9-11 October,
2019, Sinaia, Romania, pages 7–12. IEEE.
Sima, V. and Gahinet, P. (2019). Improving the conver-
gence of the periodic QZ algorithm. In Gusikhin,
O., Madani, K., and Zaytoon, J., editors, Proceedings
of the 16th International Conference on Informatics
in Control, Automation and Robotics (ICINCO-2019),
29–31 July, 2019, Prague, Czech Republic, volume 1,
Using Semi-implicit Iterations in the Periodic QZ Algorithm
45