International Conference on Computer Vision, pages
6830–6840.
Di Mattia, F., Galeone, P., De Simoni, M., and Ghelfi, E.
(2019). A survey on gans for anomaly detection. arXiv
preprint arXiv:1906.11632.
Ferguson, M. K., Ronay, A., Lee, Y.-T. T., and Law, K. H.
(2018). Detection and segmentation of manufacturing
defects with convolutional neural networks and trans-
fer learning. Smart and sustainable manufacturing
systems, 2.
Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and
Greenspan, H. (2018). Synthetic data augmentation
using gan for improved liver lesion classification. In
2018 IEEE 15th international symposium on biomed-
ical imaging (ISBI 2018), pages 289–293. IEEE.
Geinitz, S., Margraf, A., Wedel, A., Witthus, S., and Drech-
sler, K. (2016). Detection of filament misalignment in
carbon fiber production using a stereovision line scan
camera system. In Proc. of 19th World Conference on
Non-Destructive Testing.
Haselmann, M. and Gruber, D. (2017). Supervised machine
learning based surface inspection by synthetizing arti-
ficial defects. In 2017 16th IEEE international confer-
ence on machine learning and applications (ICMLA),
pages 390–395. IEEE.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Huang, S.-W., Lin, C.-T., Chen, S.-P., Wu, Y.-Y., Hsu, P.-H.,
and Lai, S.-H. (2018). Auggan: Cross domain adap-
tation with gan-based data augmentation. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), pages 718–731.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
1125–1134.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3431–3440.
Margraf, A., Stein, A., Engstler, L., Geinitz, S., and H
¨
ahner,
J. (2017). An evolutionary learning approach to self-
configuring image pipelines in the context of carbon
fiber fault detection. In 2017 16th IEEE International
Conference on Machine Learning and Applications
(ICMLA). IEEE.
Mariani, G., Scheidegger, F., Istrate, R., Bekas, C., and
Malossi, C. (2018). Bagan: Data augmentation with
balancing gan. arXiv preprint arXiv:1803.09655.
Masci, J., Meier, U., Ciresan, D., Schmidhuber, J., and
Fricout, G. (2012). Steel defect classification with
max-pooling convolutional neural networks. In The
2012 International Joint Conference on Neural Net-
works (IJCNN), pages 1–6. IEEE.
McCann, M. T., Jin, K. H., and Unser, M. (2017). Convolu-
tional neural networks for inverse problems in imag-
ing: A review. IEEE Signal Processing Magazine,
34(6):85–95.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Cortes, C., Lawrence, N. D.,
Lee, D. D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems
28, pages 91–99. Curran Associates, Inc.
Rizki, M. M., Zmuda, M. A., and Tamurino, L. A. (2002).
Evolving pattern recognition systems. In IEEE Trans-
actions on Evolutionary Computation, volume 6,
pages 594–609.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Schlegl, T., Seeb
¨
ock, P., Waldstein, S. M., Schmidt-Erfurth,
U., and Langs, G. (2017). Unsupervised anomaly de-
tection with generative adversarial networks to guide
marker discovery. In International conference on in-
formation processing in medical imaging, pages 146–
157. Springer.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Soukup, D. and Huber-M
¨
ork, R. (2014). Convolutional neu-
ral networks for steel surface defect detection from
photometric stereo images. In International Sympo-
sium on Visual Computing, pages 668–677. Springer.
Staar, B., L
¨
utjen, M., and Freitag, M. (2019). Anomaly de-
tection with convolutional neural networks for indus-
trial surface inspection. Procedia CIRP, 79:484–489.
Stein, A., Margraf, A., Moroskow, J., Geinitz, S., and
Haehner, J. (2018). Toward an Organic Comput-
ing Approach to Automated Design of Processing
Pipelines. ARCS Workshop 2018; 31th International
Conference on Architecture of Computing Systems.
VDE.
Strumberger, I., Tuba, E., Bacanin, N., Jovanovic, R., and
Tuba, M. (2019). Convolutional neural network ar-
chitecture design by the tree growth algorithm frame-
work. In 2019 International Joint Conference on Neu-
ral Networks (IJCNN), pages 1–8. IEEE.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Xie, S. and Tu, Z. (2015). Holistically-nested edge detec-
tion. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1395–1403.
Yakubovskiy, P. (2019). Segmentation models. https://
github.com/qubvel/segmentation_models.
Zhang, R., Isola, P., and Efros, A. A. (2016). Colorful im-
age colorization. In European conference on computer
vision, pages 649–666. Springer.
Data Augmentation for Semantic Segmentation in the Context of Carbon Fiber Defect Detection using Adversarial Learning
67