sending and further processing the results of compo-
nent and fault detection through a cloud service.
ACKNOWLEDGEMENTS
The presented research was supported by the Inno-
vation Fund Denmark, Grand Solutions, under grant
agreement No. 8057-00038A Drones4Energy project
1
.
REFERENCES
Agnisarman, S., Lopes, S., Madathil, K. C., Piratla, K., and
Gramopadhye, A. (2019). A survey of automation-
enabled human-in-the-loop systems for infrastructure
visual inspection. Automation in Construction, 97:52
– 76.
Al-Kaff, A., Mart
´
ın, D., Garc
´
ıa, F., de la Escalera, A., and
Armingol, J. M. (2018). Survey of computer vision
algorithms and applications for unmanned aerial vehi-
cles. Expert Systems with Applications, 92:447 – 463.
Alhassan, A. B., Zhang, X., Shen, H., and Xu, H. (2020).
Power transmission line inspection robots: A review,
trends and challenges for future research. Interna-
tional Journal of Electrical Power & Energy Systems,
118:105862.
Azevedo, F., Dias, A., Almeida, J., Oliveira, A., Fer-
reira, A., Santos, T., Martins, A., and Silva, E.
(2019). Lidar-based real-time detection and modeling
of power lines for unmanned aerial vehicles. Sensors,
19(8):1812.
B
¨
uhringer, M., Berchtold, J., B
¨
uchel, M., Dold, C.,
B
¨
utikofer, M., Feuerstein, M., Fischer, W., Bermes,
C., and Siegwart, R. (2010). Cable-crawler–robot for
the inspection of high-voltage power lines that can
passively roll over mast tops. Industrial Robot: An
International Journal.
Contreras-Cruz, M. A., Ramirez-Paredes, J. P., Hernandez-
Belmonte, U. H., and Ayala-Ramirez, V. (2019).
Vision-based novelty detection using deep features
and evolved novelty filters for specific robotic explo-
ration and inspection tasks. Sensors, 19(13):2965.
Dai, J., Li, Y., He, K., and Sun, J. (2016). R-FCN: object de-
tection via region-based fully convolutional networks.
CoRR, abs/1605.06409.
Gao, Z., Yang, G., Li, E., Shen, T., Wang, Z., Tian, Y.,
Wang, H., and Liang, Z. (2019). Insulator segmenta-
tion for power line inspection based on modified con-
ditional generative adversarial network. Journal of
Sensors, 2019.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 580–587.
1
https://drones4energy.dk/
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
Jenssen, R., Roverso, D., et al. (2018). Automatic au-
tonomous vision-based power line inspection: A re-
view of current status and the potential role of deep
learning. International Journal of Electrical Power &
Energy Systems, 99:107–120.
Jenssen, R., Roverso, D., et al. (2019). Intelligent monitor-
ing and inspection of power line components powered
by uavs and deep learning. IEEE Power and Energy
Technology Systems Journal, 6(1):11–21.
Li, Y., Hao, Z., and Lei, H. (2016). Survey of convolutional
neural network. Journal of Computer Applications,
36(9):2508–2515.
Markidis, S., Der Chien, S. W., Laure, E., Peng, I. B., and
Vetter, J. S. (2018). Nvidia tensor core programmabil-
ity, performance & precision. In 2018 IEEE Interna-
tional Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 522–531. IEEE.
Nguyen, V. N. (2019). Advancing deep learning for auto-
matic autonomous vision-based power line inspection.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).
Redmon, J. and Farhadi, A. (2016). Yolo9000: Better,
faster, stronger. arXiv preprint arXiv:1612.08242.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. CoRR, abs/1804.02767.
Takaya, K., Ohta, H., Kroumov, V., Shibayama, K., and
Nakamura, M. (2019). Development of uav system
for autonomous power line inspection. In 2019 23rd
International Conference on System Theory, Control
and Computing (ICSTCC), pages 762–767. IEEE.
Zhou, G., Yuan, J., Yen, I.-L., and Bastani, F. (2016).
Robust real-time uav based power line detection and
tracking. In 2016 IEEE International Conference on
Image Processing (ICIP), pages 744–748. IEEE.
Zhou, M., Li, K., Wang, J., Li, C., Teng, G., Ma, L., Wu, H.,
Li, W., Zhang, H., Chen, J., et al. (2019a). Automatic
extraction of power lines from uav lidar point clouds
using a novel spatial feature. ISPRS Annals of Pho-
togrammetry, Remote Sensing & Spatial Information
Sciences, 4.
Zhou, X., Fang, B., Qian, J., Xie, G., Deng, B., and Qian,
J. (2019b). Data driven faster r-cnn for transmission
line object detection. In Cyberspace Data and In-
telligence, and Cyber-Living, Syndrome, and Health,
pages 379–389. Springer.
Zou, Z., Shi, Z., Guo, Y., and Ye, J. (2019). Object detection
in 20 years: A survey. CoRR, abs/1905.05055.
Real-time On-board Detection of Components and Faults in an Autonomous UAV System for Power Line Inspection
75