feasibility of the walking trajectory with respect to
the condition on the ground reaction force: take off,
slipping and rotation of the support foot are avoided.
The ZMP trajectory is ensured to be inside a convex
hull of the support surface. The parameters of trajec-
tories of the swing leg ankle, the trunk and the arms
are tuned thanks to observations from human walking.
The effect of the choice of the ZMP evolution on the
required torque is investigated. A correlation between
the pose of the ZMP in sagittal plane and torque at an-
kle and knee in saggital plane has been shown. The
perspectives are to test this complete walking motion
experimentally.
REFERENCES
Ames, A. D. (2014). Human-inspired control of bipedal
walking robots. IEEE Transactions on Automatic
Control, 59(5):1115–1130.
Ames, A. D., Cousineau, E. A., and Powell, M. J. (2012).
Dynamically stable bipedal robotic walking with nao
via human-inspired hybrid zero dynamics. In Proc. of
the 15th ACM int. conf. on Hybrid Systems: Compu-
tation and Control, pages 135–144. ACM.
Behnke, S. (2006). Online trajectory generation for om-
nidirectional biped walking. In Proc. Int. Conf.
on Robotics and Automation (ICRA), pages 1597–
1603, Orlando, USA.
Bessonnet, G., Chesse, S., and Sardin, P. (2002). Generating
optimal gait of a human-sized biped robot. In Proc. of
the fifth Int. Conf. on Climbing and Walking Robots,
pages 717–724.
De-Le
´
on-G
´
omez, V., Luo, Q., Kalouguine, A., P
´
amanes,
J. A., Aoustin, Y., and Chevallereau, C. (2019). An es-
sential model for generating walking motions for hu-
manoid robots. Robotics and Autonomous Systems,
112:229–243.
Englsberger, J., Ott, C., Roa, M. A., Albu-Sh
¨
affer, A., and
Hirzinger, G. (2001). Bipedal walking control based
on capture point dynamics. In Proc. Int. Conf. on
Intelligent Robots and Systems (IROS), pages 4420–
4427, San Francsico, USA.
Graf, C., H
¨
aryl, A., R
¨
ofer, T., and Laue, T. (2009). A ro-
bust closed-loop gait for the standard platform league
humanoid. In Proc. Workshop on Humanoid Soc-
cer Robots of the IEEE-RAS Int. Conf. on Humanoid
Robots, pages 30–37, Paris, France.
Grundy, M., Tosh, P., McLeish, R., and Smidt, L. (1975).
An investigation of the centres of pressure under the
foot while walking. J. of bone and joint surgery.
British volume, 57(1):98–103.
Jian, Y., Winter, D. A., Ishac, M. G., and Gilchrist, L.
(1993). Trajectory of the body cog and cop during
initiation and termination of gait. Gait & Posture,
1(1):9–22.
Kajita, S., Hirukawa, H., Harada, K., and Yokoi, K.
(2014). Introduction to humanoid robotics, volume
101. Springer.
Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H.,
Kawasaki, T., Hirata, M., K.Akachi, and Isozumi, T.
(2004). Humanoid robot hrp-2. In Proc. IEEE Int.
Conf. on Robotics and Automation ICRA, pages 1083–
1090, New-Orleans, Louisiana, USA.
Khusainov, R., Sagitov, A., Klimchik, A., and Magid, E.
(2017). Arbitrary trajectory foot planner for bipedal
walking. In ICINCO (2), pages 417–424.
Koolen, T., de Boer, T., Rebula, J., Goswami, A., and Pratt,
J. (2012). Capturability-basd analysis and control of
legged locomotion, part 1: Theory and application to
three simple gait models. Int. J. of Robotics Research,
31(09):1094–1113.
Powell, M. J., Heraeid, A., and Ames, A. D. (2013). Speed
regulate in 3d robotic walking through motion transi-
tions between human-inspired partial hybrid zero dy-
namics. In Proc. IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), pages 4803–4810, Karlsruhe, Ger-
many.
Pratt, J. E., Koolen, T., de. Boer, T., Rebula, J. R., Cotton,
S., Carff, J., Johnson, M., and Neuhaus, P. D. (2012).
Capturability-based analysis and control of legged lo-
comotion, part 2: application to m2v2, a lower-body
humanoid. The International Journal of Robotic Re-
search, 31(10):1117–1133.
Rose, J. and Gamble, J. G. (2006). Human walking.
Williams & Wilkins, 3 edition.
Sakka, S. (2017). Imitation des mouvements humains par un
robot humano
¨
ıde sous contrainte d’
´
equilibre. HDR,
Universit
´
e Pierre et Marie Curie (UPMC).
Shachykov, A. (2019). Biomedical signals analysis and
neural modeling of motor coordination in Parkinson’s
disease. PhD thesis, Universit
´
e de Lorraine France.
Tlalolini, D., Aoustin, Y., and Chevallereau, C. (2010).
Design of a walking cyclic gait with single support
phases and impacts for the locomotor system of a
thirteen-link 3d biped using the parametric optimiza-
tion. Multibody System Dynamics, 23(1):33–56.
Tomic, M., Vassallo, C., Chevallereau, C., Rodic, A., and
Potkonjak, V. (2014). Arms motion of a humanoid
inspired by human motion. In Proc. Int. Conf. Medi-
cal and Service Robotics (MESROB 2014), Lausanne,
Switzerland.
Vukobratovic, M. and Borovac, B. (2004). Zero-moment
point-thirty five years of its life. Int. J. of Humanoid
Robotics, 1(1):157–173.
Vukobratovic, M., Borovac, B., Rodic, A. and, K. D., and
Potkonjak, V. (2012). A bio-inspired approach to the
realization of sustained humanoid motion. Int. J. of
Advanced Robotic System, 9(201):1–16.
Winter, D. A. (1992). Foot trajectory in human gait: a pre-
cise and multifactorial motor control task. Physical
therapy, 72(1):45–53.
Definition of a Walking with Starting and Stopping Motions for the Humanoid Romeo
55