with global matching. Pattern Recognition, 43(3):706
– 719.
Jebali, H., Richard, N., Chatoux, H., and Naouai, M.
(2018). Relocated colour contrast occurrence ma-
trix and adapted similarity measure for colour texture
retrieval. In Advanced Concepts for Intelligent Vi-
sion Systems, pages 609–619, Cham. Springer Inter-
national Publishing.
Jes
´
us, A. (2014). Riemannian l (p) averaging on lie group
of nonzero quaternions. Advances in Applied Clifford
Algebras, 24.
Khadiri, I. E., Chahi, A., Merabet, Y. E., Ruichek, Y., and
Touahni, R. (2018). Local directional ternary pat-
tern: A new texture descriptor for texture classifi-
cation. Computer Vision and Image Understanding,
169:14 – 27.
Kullback, S. and Leibler, R. (1951). On information and
sufficiency. Ann. Math. Statist, 22(1):79–86.
Maliani, A. D. E., Hassouni, M. E., Berthoumieu, Y.,
and Aboutajdine, D. (2014). Color texture classifi-
cation method based on a statistical multi-model and
geodesic distance. Journal of Visual Communication
and Image Representation, Elsevier.
Manisha, V. and Balasubramanian, R. (2017). Local neigh-
borhood difference pattern: A new feature descriptor
for natural and texture image retrieval. Multimedia
Tools and Applications, pages 1–25.
Martinez, R., Richard, N., and Fernandez, C. (2015). Al-
ternative to colour feature classification using colour
contrast ocurrence matrix. Proc. SPIE 9534, Twelfth
International Conference on Quality Control by Arti-
ficial Vision.
Mehta, R. and Egiazarian, K. (2016). Dominant rotated
local binary patterns (drlbp) for texture classification.
Pattern Recognition Letters, 71:16 – 22.
Merabet, Y. E. and Ruichek, Y. (2018). Local concave-and-
convex micro-structure patterns for texture classifica-
tion. Pattern Recognition, 76:303 – 322.
Merabet, Y. E., Ruichek, Y., and Idrissi, A. E. (2019).
Attractive-and-repulsive center-symmetric local bi-
nary patterns for texture classification. Engineering
Applications of Artificial Intelligence, 78:158 – 172.
Minh-Tan, P., Grgoire, M., and Lionel, B. (2017). Color
texture image retrieval based on local extrema features
and riemannian distance. Journal of Imaging, 3(4).
Neiva, M. B., Vacavant, A., and Bruno, O. M. (2018).
Improving texture extraction and classification using
smoothed morphological operators. Digital Signal
Processing, 83:24 – 34.
Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
24(7):971–987.
Oliveira, M. W. D. S., da Silva, N. R., Manzanera, A., and
Bruno, O. M. (2015). Feature extraction on local jet
space for texture classification. Physica A: Statistical
Mechanics and its Applications, 439:160 – 170.
Penatti, O. A., Valle, E., and da S. Torres, R. (2012). Com-
parative study of global color and texture descriptors
for web image retrieval. Journal of Visual Communi-
cation and Image Representation, 23(2):359 – 380.
Richard, N., Martinez, R., and Fernandez, C. (2016).
Colour local pattern: a texture feature for colour im-
ages. Journal of the International Colour Association,
16:56–68.
Rowan, H. W. (London 1866). Elements of Quaternions.
Longmans Green.
Sangwine, S. J. (1996). Fourier transforms of colour images
using quaternion or hypercomplex, numbers. Elec-
tronics Letters, 32(21):1979–1980.
Timo, A., Abdenour, H., and Matti, P. (2004). Face recog-
nition with local binary patterns. In Pajdla, T. and
Matas, J., editors, Computer Vision - ECCV 2004,
pages 469–481, Berlin, Heidelberg. Springer Berlin
Heidelberg.
Xiaoyan, S., Shao-Hui, C., Jiang, L., and Frederic, M.
(2009). Automatic diagnosis for prostate cancer using
run-length matrix method. Medical Imaging. Procced-
ing of SPIE, 7260.
Local Rotation Pattern: A Local Descriptor of Color Textures
573