ACKNOWLEDGEMENTS
We would like to thank Yuriy Polyakov and Yarkın
Dor
¨
oz for their valuable suggestions on the imple-
mentation. This work was partly supported by the PA-
PAYA project funded by the European Union’s Hori-
zon 2020 Research and Innovation Programme, under
Grant Agreement no. 786767.
REFERENCES
Azraoui, M., Bahram, M., Bozdemir, B., Canard, S., Ci-
ceri, E., Ermis, O., Masalha, R., Mosconi, M.,
¨
Onen,
M., Paindavoine, M., Rozenberg, B., Vialla, B., and
Vicini, S. (2019). SoK: Cryptography for neural net-
work. In IFIP Summer School on Privacy and Identity
Management.
Barni, M., Orlandi, C., and Piva, A. (2006). A privacy-
preserving protocol for neural-network-based compu-
tation. In Multimedia & Security.
Bourse, F., Minelli, M., Minihold, M., and Paillier, P.
(2018). Fast homomorphic evaluation of deep dis-
cretized neural networks. In CRYPTO.
Chabanne, H., de Wargny, A., Milgram, J., Morel, C., and
Prouff, E. (2017). Privacy-preserving classification on
deep neural network. Cryptology ePrint Archive.
Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov,
S., Hoffstein, J., Lauter, K., Lokam, S., Moody,
D., Morrison, T., Sahai, A., and Vaikuntanathan, V.
(2017). Security of homomorphic encryption. Tech-
nical report, HomomorphicEncryption.org.
Chou, E., Beal, J., Levy, D., Yeung, S., Haque, A., and Fei-
Fei, L. (2018). Faster cryptonets: Leveraging sparsity
for real-world encrypted inference. CoRR.
Dahl, M., Mancuso, J., Dupis, Y., Decoste, B., Giraud, M.,
Livingstone, I., Patriquin, J., and Uhma, G. (2018).
Private machine learning in tensorflow using secure
computation. CoRR.
Derler, D., Krenn, S., Lor
¨
unser, T., Ramacher, S., Slamanig,
D., and Striecks, C. (2018). Revisiting proxy re-
encryption: Forward secrecy, improved security, and
applications. Cryptology ePrint Archive.
Ding, W., Yan, Z., and Deng, R. H. (2017). Encrypted data
processing with homomorphic re-encryption. Inf. Sci.
Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. Cryptology ePrint Archive.
Gentry, C. (2009a). A Fully Homomorphic Encryption
Scheme.
Gentry, C. (2009b). Fully homomorphic encryption using
ideal lattices. In STOC.
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K. E.,
Naehrig, M., and Wernsing, J. (2016). Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In ICML.
Halevi, S. (2017). Homomorphic encryption. Tutorials on
the Foundations of Cryptography, Information Secu-
rity and Cryptography.
Halevi, S., Polyakov, Y., and Shoup, V. (2018). An im-
proved rns variant of the bfv homomorphic encryption
scheme. Cryptology ePrint Archive.
Hesamifard, E., Takabi, H., and Ghasemi, M. (2017).
Cryptodl: Deep neural networks over encrypted data.
CoRR.
Hesamifard, E., Takabi, H., Ghasemi, M., and Wright, R. N.
(2018). Privacy-preserving machine learning as a ser-
vice. PoPETs.
Ibarrondo, A. and
¨
Onen, M. (2018). Fhe-compatible batch
normalization for privacy preserving deep learning. In
DPM.
Jiang, X., Kim, M., Lauter, K. E., and Song, Y. (2018). Se-
cure outsourced matrix computation and application
to neural networks. In ACM CCS.
Juvekar, C., Vaikuntanathan, V., and Chandrakasan, A.
(2018). GAZELLE: A low latency framework for se-
cure neural network inference. In USENIX.
Liu, J., Juuti, M., Lu, Y., and Asokan, N. (2017). Oblivi-
ous neural network predictions via minionn transfor-
mations. In ACM CCS.
Mansouri, M., Bozdemir, B.,
¨
Onen, M., and Ermis, O.
(2019). PAC: Privacy-preserving arrhythmia classi-
fication with neural networks. In FPS.
Mohassel, P. and Rindal, P. (2018). ABY
3
: A mixed proto-
col framework for machine learning. In ACM CCS.
Mohassel, P. and Zhang, Y. (2017). SecureML: A system
for scalable privacy-preserving machine learning. In
S&P.
Orlandi, C., Piva, A., and Barni, M. (2007). Oblivious neu-
ral network computing via homomorphic encryption.
EURASIP.
Polyakov, Y., Rohloff, K., Sahu, G., and Vaikuntanathan, V.
(2017). Fast proxy re-encryption for publish/subscribe
systems. Trans. Priv. Secur.
Riazi, M. S., Weinert, C., Tkachenko, O., Songhori, E. M.,
Schneider, T., and Koushanfar, F. (2018). Chameleon:
A hybrid secure computation framework for machine
learning applications. In AsiaCCS.
Rouhani, B. D., Riazi, M. S., and Koushanfar, F. (2018).
Deepsecure: scalable provably-secure deep learning.
In DAC.
Sanyal, A., Kusner, M. J., Gasc
´
on, A., and Kanade, V.
(2018). TAPAS: tricks to accelerate (encrypted) pre-
diction as a service. CoRR.
Tillem, G., Bozdemir, B., and
¨
Onen, M. (2020). SwaNN:
Switching among cryptographic tools for privacy-
preserving neural network predictions. In preprint.
https://www.eurecom.fr/
∼
bozdemir/SwaNNfull.pdf
Wagh, S., Gupta, D., and Chandran, N. (2019). SecureNN:
Efficient and private neural network training. In
PoPETs.
SECRYPT 2020 - 17th International Conference on Security and Cryptography
404