Comito, C., Patarin, S., and Talia, D. (2006). A Seman-
tic Overlay Network for P2P Schema-Based Data In-
tegration. In 11th IEEE Symposium on Computers
and Communications (ISCC’06), pages 88–94. ISSN:
1530-1346.
Craswell, N. (2009). Mean reciprocal rank. Encyclopedia
of database systems, 1703.
de Carvalho, M. G., Laender, A. H., Gonc¸alves, M. A.,
and da Silva, A. S. (2013). An evolutionary approach
to complex schema matching. Information Systems,
38(3):302–316.
Dessloch, S., Hernandez, M. A., Wisnesky, R., Radwan,
A., and Zhou, J. (2008). Orchid: Integrating Schema
Mapping and ETL. In 2008 IEEE 24th International
Conference on Data Engineering, pages 1307–1316.
Foley, J., Bendersky, M., and Josifovski, V. (2015). Learn-
ing to Extract Local Events from the Web. In Pro-
ceedings of the 38th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’15, pages 423–432, New York, NY,
USA. ACM. event-place: Santiago, Chile.
Gu, B., Li, Z., Zhang, X., Liu, A., Liu, G., Zheng, K., Zhao,
L., and Zhou, X. (2017). The Interaction Between
Schema Matching and Record Matching in Data Inte-
gration. IEEE Transactions on Knowledge and Data
Engineering, 29(1):186–199.
Hand, D. J. and Till, R. J. (2001). A simple generalisation of
the area under the roc curve for multiple class classi-
fication problems. Machine learning, 45(2):171–186.
Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2016). Bag of tricks for efficient text classification.
CoRR, abs/1607.01759.
Kirsten, T., Thor, A., and Rahm, E. (2007). Instance-
Based Matching of Large Life Science Ontologies. In
Cohen-Boulakia, S. and Tannen, V., editors, Data In-
tegration in the Life Sciences, Lecture Notes in Com-
puter Science, pages 172–187, Berlin, Heidelberg.
Springer.
Madhavan, J., Bernstein, P. A., and Rahm, E. (2001).
Generic schema matching with cupid. In vldb, vol-
ume 1, pages 49–58.
Nam, J., Kim, J., Loza Menc
´
ıa, E., Gurevych, I., and
F
¨
urnkranz, J. (2014). Large-scale multi-label text
classification — revisiting neural networks. In
Calders, T., Esposito, F., H
¨
ullermeier, E., and Meo,
R., editors, Machine Learning and Knowledge Dis-
covery in Databases, pages 437–452, Berlin, Heidel-
berg. Springer Berlin Heidelberg.
Neumann, M., King, D., Beltagy, I., and Ammar, W. (2019).
ScispaCy: Fast and Robust Models for Biomedical
Natural Language Processing. In BioNLP@ACL.
Paulus, A., Pomp, A., Poth, L., Lipp, J., and Meisen, T.
(2018). Gathering and Combining Semantic Concepts
from Multiple Knowledge Bases:. In Proceedings of
the 20th International Conference on Enterprise In-
formation Systems, pages 69–80, Funchal, Madeira,
Portugal. SCITEPRESS - Science and Technology
Publications.
Pham, M., Alse, S., Knoblock, C. A., and Szekely, P.
(2016). Semantic Labeling: A Domain-Independent
Approach. In Groth, P., Simperl, E., Gray, A., Sabou,
M., Kr
¨
otzsch, M., Lecue, F., Fl
¨
ock, F., and Gil, Y., ed-
itors, The Semantic Web – ISWC 2016, Lecture Notes
in Computer Science, pages 446–462, Cham. Springer
International Publishing.
Pomp, A., Poth, L., Kraus, V., and Meisen, T. (2019).
Enhancing Knowledge Graphs with Data Representa-
tives:. In Proceedings of the 21st International Con-
ference on Enterprise Information Systems, pages 49–
60, Heraklion, Crete, Greece. SCITEPRESS - Science
and Technology Publications.
Ristoski, P., Petrovski, P., Mika, P., and Paulheim, H.
(2018). A machine learning approach for prod-
uct matching and categorization. Semantic Web,
9(5):707–728.
Schmidts, O., Kraft, B., Siebigteroth, I., and Z
¨
undorf, A.
(2019). Schema Matching with Frequent Changes
on Semi-Structured Input Files: A Machine Learning
Approach on Biological Product Data. In Proceedings
of the 21st International Conference on Enterprise In-
formation Systems, pages 208–215, Heraklion, Crete,
Greece. SCITEPRESS - Science and Technology Pub-
lications.
Shvaiko, P. and Euzenat, J. (2005). A Survey of Schema-
Based Matching Approaches. In Spaccapietra, S., ed-
itor, Journal on Data Semantics IV, Lecture Notes in
Computer Science, pages 146–171. Springer Berlin
Heidelberg.
Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). Mining
Multi-label Data. In Maimon, O. and Rokach, L., ed-
itors, Data Mining and Knowledge Discovery Hand-
book, pages 667–685. Springer US, Boston, MA.
Catalog Integration of Low-quality Product Data by Attribute Label Ranking
101