Table 6: Average number of update steps (epochs) until the k-means optimization converges (100 runs). All columns show
percentages relative to the column “maximin:std”, which thus necessarily always shows 100%.
maximin kmeans++
std trimmed sectioned std trimmed
1% 2% 5% 5% 10% 20% 20% 20% 10% 10% 5% 5%
data set 0% 2% 0% 2% 0% 1%
iris 100 112 121 99.3 108 111 106 103 105 95.7 105 104 114 105
wine 100 87.7 79.9 76.7 89.2 89.7 93.2 89.0 78.4 82.6 87.0 78.7 89.0 83.4
yeast 100 58.9 71.6 86.8 91.3 103 88.6 79.7 75.2 78.5 80.6 83.3 89.7 86.4
hepta 100 100 100 100 116 102 100 158 106 110 100 100 100 100
r15 100 95.9 113 101 94.7 92.2 94.6 99.8 93.3 97.2 96.9 95.4 90.3 93.7
d31 100 70.4 75.4 117 72.4 83.1 85.4 137 110 123 93.3 106 86.4 87.1
a1 100 57.7 66.1 73.3 79.1 82.5 87.1 72.7 67.9 69.7 68.7 67.8 70.1 67.6
a2 100 76.9 85.9 90.3 90.3 98.9 102 117 92.9 102 90.1 90.0 86.1 80.4
a3 100 70.8 69.9 87.0 80.3 80.9 87.0 100 91.4 94.1 80.2 85.2 73.4 79.7
s1 100 46.9 50.4 53.0 75.9 81.7 94.1 133 92.3 83.7 67.7 68.9 62.8 48.6
s2 100 73.8 68.1 64.8 94.1 87.1 95.7 104 84.8 88.0 71.5 75.5 68.4 67.4
s3 100 95.6 91.1 94.2 101 104 104 103 90.7 92.7 96.5 96.9 96.0 93.2
s4 100 87.0 89.9 84.1 94.4 100 100 92.4 92.6 90.0 86.1 76.9 85.9 85.9
birch1 100 72.9 72.0 77.7 87.9 91.9 99.0 96.8 79.9 81.5 73.5 75.5 72.5 77.6
birch2 100 135 138 139 113 107 109 134 135 145 132 140 121 134
birch3 100 96.8 90.6 103 95.8 99.4 97.7 102 94.9 98.8 95.6 97.4 99.4 101
REFERENCES
Arthur, D. and Vassilvitskii, S. (2007). k-means++: The
advantages of careful seeding. In Proc. 18
th
Annual
SIAM Symp. on Discrete Algorithms (SODA’07, New
Orleans, LA), pages 1027–1035, Philadelphia, PA,
USA. Society for Industrial and Applied Mathemat-
ics.
Bachem, O., Lucic, M., Hassani, S., and Krause, A.
(2016a). Approximate k-means++ in sublinear time.
In Proc. 30 AAAI Conf. on Artificial Intelligence
(AAAI’16, Phoenix, AZ), pages 1459–1467, Menlo
Park, CA, USA. AAAI Press.
Bachem, O., Lucic, M., Hassani, S., and Krause, A.
(2016b). Fast and provably good seedings for k-
means. In Proc. 30
th
Conf. on Neural Informa-
tion Processing Systems (NIPS’16, Barcelona, Spain),
pages 55–63, Red Hook, NY, USA. Curran Asso-
ciates.
Breunig, M., Kriegel, H.-P., Ng, R., and Sander, J. (2000).
Lof: Identifying density-based local outliers. SIG-
MOD Record, 29:93–104.
Dheeru, D. and Taniskidou, E. (2017). UCI Machine Learn-
ing Repository. University of California at Irvine,
Irvine, CA, USA.
Elkan, C. (2003). Using the triangle inequality to accel-
erate k-means. In Proc. 20
th
Int. Conf. on Machine
Learning (ICML’03, Washington, DC), pages 147–
153, Menlo Park, CA, USA. AAAI Press.
Fr
¨
anti, P. and Sieranoja, S. (2018). k-means properties on
six clustering benchmark datasets. Applied Intelli-
gence, 48:4743–4759.
Hamerly, G. (2010). Making k-means even faster. In Proc.
SIAM Int. Conf. on Data Mining (SDM 2010, Colum-
bus, OH), pages 130–140, Philadelphia, PA, USA. So-
ciety for Industrial and Applied Mathematics.
Hathaway, R., Bezdek, J., and Huband, J. (2006). Maximin
initialization for cluster analysis. In Proc. Iberoameri-
can Cong. on Pattern Recognition (CIARP 2006, Can-
cun, Mexico), pages 14–26, Berlin/Heidelberg, Ger-
many. Springer.
Hoare, C. (1961). Algorithm 65: Find. Communications of
the ACM, 4:321–322.
Kriegel, H.-P., Kr
¨
oger, P., Schubert, E., and Zimek, A.
(2009). Loop: Local outlier probabilities. In Proc.
18
th
ACM Int. Conf. on Information and Knowledge
Management (CIKM’09, Hong Kong, China), pages
1649–1652, New York, NY, USA. ACM Press.
Newling, J. and Fleuret, F. (2016a). Fast k-means with ac-
curate bounds. In Proc. 33
rd
Int. Conf. on Machine
Learning (ICML’16, New York, NY), pages 936–944.
JMLR Workshop and Conference Proceedings 48.
Newling, J. and Fleuret, F. (2016b). k-medoids for k-means
seeding. In Proc. 31
th
Conf. on Neural Informa-
tion Processing Systems (NIPS’17, Long Beach, CA),
pages 5195–5203, Red Hook, NY, USA. Curran As-
sociates.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, Y.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research,
12:2825–2830.
Selim, S. and Ismail, M. (1984). k-means-type algorithms:
A generalized convergence theorem and characteriza-
tion of local optimality. IEEE Trans. Pattern Analysis
and Machine Intelligence, 6:81–87.
Ultsch, A. (2005). U*C: Self-organized clustering with
emergent feature maps. In Lernen, Wissensentdeckung
und Adaptivit
¨
at (LWA), pages 240–244, Saarbruecken,
Germany.
Yarikova, O. (2019). Vergleich der Initialisierungsmetho-
den f
¨
ur den k-Means-Clustering-Algorithmus.
Initializing k-means Clustering
267