ACKNOWLEDGEMENTS
This work has been supported by the ECSEL JU
project SILENSE “(Ultra)Sound Interfaces and Low
Energy iNtegrated Sensors” Project No.: ECSEL JU
737487-8 and MSMT 8A17006 (Ministry of
Education Youth and Sports of the Czech Republic).
REFERENCES
Bottomley, G. E., Alexander, S. T. A novel approach for
stabilizing recursive least squares filters. IEEE
Transactions on Signal Processing, vol. 39, pp. 1770-
1779, 1991.
Cioffi, J., Kailath, T. Fast recursive-least-squares
transversal filters for adaptive filtering. IEEE
Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 2, pp. 304-337, 1984
Constantinides, G., Cheung, P. Y. K., Luk, W. Synthesis
and optimization of DSP algorithms. Kluwer,
Dordrecht, 2004.
Diniz, P. S. R. Adaptive filtering: algorithms and practical
implementation. Second edition, Kluwer Academic
Press, Norwell, MA, 2002.
Fang, F., Chen, T., Rutebnbar, R. A. Floating point bit-
width optimization for low-power signal processing
applications. Proc. Int. Conf. on Acoustics, Speech and
Signal Proc., vol. 3, pp. 3208-3211, 2002.
Kadlec, J. Continuous probabilistic identification of
autoregression model with unknown order. In:
Analýza, syntéza a rozpoznávání řeči, ČSVTS, Prague,
1985.
Kadlec, J. Probabilistic identification of regression model
in fixed point. Ph.D. thesis, UTIA CAS, Czech
Republic, September 1986.
Kadlec, J., Likhonina, R. Adaptive RLS algorithms
reference implementations (application note). UTIA,
2016.
Lee, D., Morf, M., Fridlander, B. Recursive least-squares
ladder estimation algorithms. IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 29, no.
3, pp. 627-641, 1981.
Moonen, M. Introduction to adaptive signal processing. K.
U. Leuven, Leuven, Belgium, 1999.
Peterka, V. Bayesian approach to system identification. In:
Eykhoff, P. (Ed.), Trends and Progress in System
Identification. Pergamon Press, Oxford, pp. 239-304,
1981.
Pohl, Z., Tichy, M., Kadlec, J. Implementation of the
least-squares Lattice with order and forgetting factor
estimation for FPGA. EURASIP Journal on Advances
in Signal Processing, pp. 1-11, 2008.
Pohl, Z., Kohout, L. UTIA evaluation board v1.7-v1.8.
Beamforming demo (application note), UTIA AV CR,
v.v.i., 2019.
Pradipa, R., Kavith, S. Hand gesture recognition – analysis
of various techniques, methods and other algorithms.
International Conference on Innovations in
Engineering and Technology (ICIET’ 14). Available at
http://www.rroij.com/open-access/hand-gesture-
recognition--analysis-ofvarious-techniques-methods-
and-theiralgorithms.pdf
Premaratne, P. Human computer interaction using
hand gestures, cognitive science and technology.
DOI: 10.1007/978-981-4585-69-9_2, Springer
Science+Business Media Singapore, 2014
Regalia, P. A. Numerical stability properties of a
QR-based fast least squares algorithm. IEEE
Transactions on Signal Processing, vol. 41, no. 6,
pp. 2096-2109, 1993.