Workshops 2017, Gothenburg, Sweden, April 5-7,
2017, pages 282–285, 2017.
R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns:
The formal definition and automatic detection of
architecture smells. 2015, 12th Working IEEE/IFIP
Conf. on Software Architecture, pages 51–60, 2015.
M. Abbes, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, An
empirical study of the impact of two antipatterns, Blob
and Spaghetti Code, on program comprehension, 15th
European Conference on Software Maintenance and
Reengineering, CSMR 2011, 1–4 March 2011,
Oldenburg, Germany, IEEE Computer Society, 2011,
pp. 181–190.
F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An
exploratory study of the impact of antipatterns on class
change- and fault-proneness, Empir. Softw. Eng. 17 (3)
(2012) 243–275.
F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. De Lucia, On the diffuseness and the impact on
maintainability of code smells: a large-scale empirical
investigation, Empir. Softw. Eng. (2017) 1–34.
D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus,
and T. Dybå. 2013. Quantifying the Effect of Code
Smells on Maintenance Effort. IEEE Transactions on
Software Engineering 39, 8 (Aug 2013), 1144–1156.
M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, D. Poshyvanyk, When and why your code
starts to smell bad, Proceedings of the 37th
International Conference on Software Engineering -
Volume 1, ICSE ’15, IEEE Press, Piscataway, NJ,
USA, 2015, pp. 403–414. [Online].
N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F.L. Meur,
Decor: a method for the specification and detection of
code and design smells, IEEE Transaction on Software
Engineering, 36 (2010) 20–36.
D. Le and N. Medvidovic. Architectural-based speculative
analysis to predict bugs in a software system. In
Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE ’16), pages
807–810, Austin, TX, USA, 2016.
F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D.
Poshyvanyk, A. De Lucia, Mining version histories for
detecting code smells, Softw. Eng. IEEE Trans. 41 (5)
(2015) 462–489.
N. Tsantalis, A. Chatzigeorgiou, Identification of move
method refactoring opportunities, IEEE Trans. Softw.
Eng. 35 (3) (2009) 347–367.
M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.
J. Brunet, R. A. Bittencourt, D. Serey, and J. Figueiredo. On
the evolutionary nature of architectural violations. In
Reverse Engineering (WCRE), 2012 19th Working
Conference on. IEEE, 2012.
D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus,
and T. Dybå. 2013. Quantifying the Effect of Code
Smells on Maintenance Effort. IEEE Transactions on
Software Engineering 39, 8 (Aug 2013), 1144–1156.
M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, Denys Poshyvanyk. When and Why Your
Code Starts to Smell Bad.
G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells: Managing
Technical Debt. Morgan Kaufmann, 1 edition, 2014.
Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016.
Designite: a software design quality assessment tool. In
Proceedings of BRIDGE ’16, New York, NY, USA, 1–4.
N. Tsantalis, M. Mansouri, L. M. Eshkevari, D.
Mazinanian, and D. Dig, “Accurate and efficient
refactoring detection in commit history,” in
Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018, pp. 483–494.
R. A. Fisher, “Confidence limits for a cross-product ratio,”
Australian Journal of Statistics, 1962.
M. Bernardi, M. Cimitile, Reducing Static Dependences
Exploiting a Declarative Design Patterns Framework,
in Proceedings of the 11th International Joint
Conference on Software Technologies - Volume 2:
ICSOFT-PT, ISBN 978-989-758-194-6, pages 154-
160.