Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y.,
& Tang, X. (2015). Deepid-net: Deformable deep
convolutional neural networks for object detection. In
Proceedings of the IEEE conference on computer vision
and pattern recognition (pp. 2403-2412).
Jin, K. H., McCann, M. T., Froustey, E., & Unser, M.
(2017). Deep convolutional neural network for inverse
problems in imaging. IEEE Transactions on Image
Processing, 26(9), 4509-4522.
Woo, S., & Lee, C. L. (2018, August). Decision boundary
formation of deep convolution networks with relu. In
2018 IEEE 16th Intl Conf on Dependable, Autonomic
and Secure Computing, 16th Intl Conf on Pervasive
Intelligence and Computing, 4th Intl Conf on Big Data
Intelligence and Computing and Cyber Science and
Technology Congress
(DASC/PiCom/DataCom/CyberSciTech) (pp. 885-
888). IEEE.
Wojna, Z., Gorban, A. N., Lee, D. S., Murphy, K., Yu, Q.,
Li, Y., & Ibarz, J. (2017, November). Attention-based
extraction of structured information from street view
imagery. In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR) (Vol.
1, pp. 844-850). IEEE.
Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I.,
Wang, G., ... & Whyntie, T. (2018). NiftyNet: a deep-
learning platform for medical imaging. Computer
methods and programs in biomedicine, 158, 113-122.
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J.,
Battenberg, E., Case, C., ... & Chen, J. (2016, June).
Deep speech 2: End-to-end speech recognition in
english and mandarin. In International conference on
machine learning (pp. 173-182).
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition
(pp. 580-587).
Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised
representation learning with deep convolutional
generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Yang, H. F., Lin, K., & Chen, C. S. (2017). Supervised
learning of semantics-preserving hash via deep
convolutional neural networks. IEEE transactions on
pattern analysis and machine intelligence, 40(2), 437-
451.
Zeiler, M. D., & Fergus, R. (2014, September). Visualizing
and understanding convolutional networks. In
European conference on computer vision (pp. 818-
833). Springer, Cham.
Yosinski, J., Clune, J., Bengio, Y., & Lipson, H. (2014).
How transferable are features in deep neural networks?.
In Advances in neural information processing systems
(pp. 3320-3328).
Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H.
(2015). Understanding neural networks through deep
visualization. arXiv preprint arXiv:1506.06579.
Koushik, J. (2016). Understanding convolutional neural
networks. arXiv preprint arXiv:1605.09081.
Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., & Fergus, R. (2013). Intriguing
properties of neural networks. arXiv preprint
arXiv:1312.6199.
Mallat, S. (2016). Understanding deep convolutional
networks. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering
Sciences, 374(2065), 20150203.
Kim, J., Kwon Lee, J., & Mu Lee, K. (2016). Accurate
image super-resolution using very deep convolutional
networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1646-
1654).
Lim, B., Son, S., Kim, H., Nah, S., & Mu Lee, K. (2017).
Enhanced deep residual networks for single image
super-resolution. In Proceedings of the IEEE
conference on computer vision and pattern recognition
workshops (pp. 136-144).
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., & Fu, Y.
(2018). Image super-resolution using very deep residual
channel attention networks. In Proceedings of the
European Conference on Computer Vision (ECCV) (pp.
286-301).
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., ... &
Change Loy, C. (2018). Esrgan: Enhanced super-
resolution generative adversarial networks. In
Proceedings of the European Conference on Computer
Vision (ECCV) (pp. 0-0).