In order to expand the functional architecture, we
are planning to embed several sensors such as ther-
mal camera. Additionally, the adequate communica-
tion device will be implemented in order to accom-
plish cooperative missions.
REFERENCES
Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand,
F. (1998). An architecture for autonomy. The Interna-
tional Journal of Robotics Research, 17.
Asmaa, I., Boukhdir, K., and Hicham, M. (2019). Uav con-
trol architecture: Review. International Journal of Ad-
vanced Computer Science and Applications, 10.
Belbachir, A. and Escareno, J. (2016). Autonomous de-
cisional high-level planning for uavs-based forest-fire
localization. In Proceedings of the 13th International
Conference on Informatics in Control, Automation
and Robotics - Volume 1: ICINCO,, pages 153–159.
INSTICC, SciTePress.
Belbachir, A., Escareno, J., Rubio, E., and Sossa, H. (2015).
Preliminary results on uav-based forest fire localiza-
tion based on decisional navigation. pages 377–382.
Benic, Z., Piljek, P., and Kotarski, D. (2016). Mathemat-
ical modelling of unmanned aerial vehicles with four
rotors. Interdisciplinary Description of Complex Sys-
tems, pages 88–100.
Brooks, R. (1986). A robust layered control system for a
mobile robot. IEEE Journal on Robotics and Automa-
tion, 2(1):14–23.
Janssen, R., van Meijl, E., Di Marco, D., van de Molengraft,
R., and Steinbuch, M. (2013). Integrating planning
and execution for ros enabled service robots using hi-
erarchical action representations. In 2013 16th Inter-
national Conference on Advanced Robotics (ICAR),
pages 1–7.
Kotarski, D., Benic, Z., and Krznar, M. (2016). Con-
trol design for unmanned aerial vehicles with four ro-
tors. Interdisciplinary Description of Complex Sys-
tems, pages 236–245.
Lamping, A., Ouwerkerk, J., Stockton, N., Cohen, K., and
Kumar, M. (2018). Flymaster: Multi-uav control and
supervision with ros. In AIAA Aviation Forum.
Li, M., Yi, X., Wang, Y., Cai, Z., and Zhang, Y. (2016).
Subsumption model implemented on ros for mobile
robots. In 2016 Annual IEEE Systems Conference
(SysCon), pages 1–6.
Maciel-Pearson, B. G., Marchegiani, L., Akcay, S.,
Abarghouei, A. A., Garforth, J., and Breckon, T. P.
(2019). Online deep reinforcement learning for au-
tonomous UAV navigation and exploration of outdoor
environments. CoRR, abs/1912.05684.
Mcgann, C., Py, F., Rajan, K., Thomas, H., Henthorn, R.,
and McEwen, R. (2008). A deliberative architecture
for auv control. pages 1049 – 1054.
Misra, S., Mukherjee, A., Rahman, A. U., and Raghuwan-
shi, N. S. (2020). ROSE: random opportunistic and
selective exploration for cooperative edge swarm of
uavs. In 2020 International Conference on COMmuni-
cation Systems & NETworkS, COMSNETS 2020, Ben-
galuru, India, January 7-11, 2020, pages 368–374.
IEEE.
R. Braga, R. Silva, A. R. F. C. (2017). A combined approach
for 3d formation control in a multi-uav system using
ros. In International Micro Air Vehicle Conference
and Flight Competition.
Sardinha, H., Dragone, M., and Vargas, P. (2018). Closing
the gap in swarm robotics simulations: An extended
ardupilot/gazebo plugin.
Wang, S., Liu, L., Qu, L., Yu, C., Sun, Y., Gao, F., and
Dong, J. (2019). Accurate ulva prolifera regions
extraction of UAV images with superpixel and cnns
for ocean environment monitoring. Neurocomputing,
348:158–168.
Yi, X., Wang, Y., Cai, Z., and Zhang, Y. (2016). Subsump-
tion model implemented on ros for mobile robots.
pages 1–6.
ICINCO 2020 - 17th International Conference on Informatics in Control, Automation and Robotics
512