ACKNOWLEDGMENT
This research was supported by the project Health-
CAT, funded by the European Fund for regional de-
velopment, and by the project SMOOTH (project
number 6158-00009B) by Innovation Fund Denmark.
REFERENCES
Bernardin, K. and Stiefelhagen, R. (2008). Evaluating mul-
tiple object tracking performance: The clear mot met-
rics. EURASIP Journal on Image and Video Process-
ing, 2008.
Blackman, S. S. (2004). Multiple hypothesis tracking for
multiple target tracking. IEEE Aerospace and Elec-
tronic Systems Magazine, 19(1):5–18.
Cao, Z., Hidalgo, G., Simon, T., Wei, S., and Sheikh,
Y. (2018). Openpose: Realtime multi-person 2d
pose estimation using part affinity fields. CoRR,
abs/1812.08008.
Girshick, R. B. (2015). Fast R-CNN. CoRR,
abs/1504.08083.
Girshick, R. B., Donahue, J., Darrell, T., and Malik, J.
(2013). Rich feature hierarchies for accurate ob-
ject detection and semantic segmentation. CoRR,
abs/1311.2524.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. B. (2017).
Mask R-CNN. CoRR, abs/1703.06870.
Kim, C., Li, F., Ciptadi, A., and Rehg, J. (2015). Multiple
hypothesis tracking revisited. pages 4696–4704.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Proceedings of the 25th Interna-
tional Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, page 1097–1105, Red
Hook, NY, USA. Curran Associates Inc.
Leal-Taix
´
e, L., Milan, A., Schindler, K., Cremers, D., Reid,
I. D., and Roth, S. (2017). Tracking the trackers: An
analysis of the state of the art in multiple object track-
ing. CoRR, abs/1704.02781.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S. E.,
Fu, C., and Berg, A. C. (2015). SSD: single shot multi-
box detector. CoRR, abs/1512.02325.
Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A.
(2015). You only look once: Unified, real-time object
detection. CoRR, abs/1506.02640.
Ren, S., He, K., Girshick, R. B., and Sun, J. (2015). Faster
R-CNN: towards real-time object detection with re-
gion proposal networks. CoRR, abs/1506.01497.
Rezatofighi, S. H., Milan, A., Zhang, Z., Shi, Q., Dick, A.,
and Reid, I. (2015). Joint probabilistic data associa-
tion revisited. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 3047–3055.
Schulter, S., Vernaza, P., Choi, W., and Chandraker, M.
(2017). Deep network flow for multi-object tracking.
CoRR, abs/1706.08482.
Son, J., Baek, M., Cho, M., and Han, B. (2017). Multi-
object tracking with quadruplet convolutional neural
networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3786–
3795.
Stanford Artificial Intelligence Laboratory et al. (2018).
Robotic operating system.
Voigtlaender, P., Krause, M., Osep, A., Luiten, J.,
Sekar, B. B. G., Geiger, A., and Leibe, B.
(2019). Mots: Multi-object tracking and segmenta-
tion. arXiv:1902.03604[cs]. arXiv: 1902.03604.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple on-
line and realtime tracking with a deep association met-
ric. CoRR, abs/1703.07402.
Zhou, X., Wang, D., and Kr
¨
ahenb
¨
uhl, P. (2019). Objects as
points. CoRR, abs/1904.07850.
ICINCO 2020 - 17th International Conference on Informatics in Control, Automation and Robotics
520