variables on the predicted outcome. On the other
hand, with the mounting successful applications of
Transfer Learning, we endeavor to explore that path
as well. Transfer Learning methods might be a key to
improve the performance by fine-tuning pre-trained
models rather than training from scratch.
REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., ... & Kudlur, M. (2016). Tensorflow: A system for
large-scale machine learning. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (pp. 265-283).
Berndt, D. J., & Clifford, J. (1994). Using dynamic time
warping to find patterns in time series. In Proceedings
of KDD workshop (Vol. 10, No. 16, pp. 359-370).
Chollet, F., (2015). Keras. https://github.com/fchollet/keras
Cui, Z., Chen, W., & Chen, Y. (2016). Multi-scale
convolutional neural networks for time series
classification. arXiv preprint arXiv:1603.06995.
Desautels, T., Calvert, J., Hoffman, J., Jay, M., Kerem, Y.,
Shieh, L., ... & Wales, D. J. (2016). Prediction of sepsis
in the intensive care unit with minimal electronic health
record data: a machine learning approach. JMIR
Medical Informatics, 4(3), e28.
Elbattah, M., 2020. https://github.com/Mahmoud-
Elbattah/DeLTA2020.
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., &
Muller, P. A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge
Discovery, 33(4), 917-963.
Fulcher, B. D. (2018). Feature-based time-series analysis.
In Feature Engineering for Machine Learning and
Data Analytics (pp. 87-116). CRC Press.
Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin,
Y. N. (2017). Convolutional sequence to sequence
learning. In Proceedings of the 34th International
Conference on Machine Learning (ICML)-Volume 70
(pp. 1243-1252).
Harutyunyan, H., Khachatrian, H., Kale, D. C., Ver Steeg,
G., & Galstyan, A. (2019). Multitask learning and
benchmarking with clinical time series data. Scientific
Data, 6(1), 1-18.
Karim, F., Majumdar, S., Darabi, H., & Harford, S. (2019).
Multivariate LSTM-FCNs for time series classification.
Neural Networks, 116, 237-245.
Kingma, D. P., and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:
1412.6980.
Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C.,
& Faisal, A. A. (2018). The artificial intelligence
clinician learns optimal treatment strategies for sepsis
in intensive care. Nature Medicine, 24(11), 1716-1720.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet classification with deep convolutional neural
networks. In Proceedings of Advances in Neural
Information Processing Systems (pp. 1097-1105).
Kumar, M., & Singh, S. (2009). Engineering Mathematics-
III. KRISHNA Prakashan Media, Meerut, India.
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W. E., and Jackel, L. D.
(1989). Handwritten digit recognition with a back-
propagation network. In Proceedings of Advances in
Neural Information Processing Systems (NIPS) (pp.
396-404).
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document
recognition. In Proceedings of the IEEE, 86(11), 2278-
2324.
LeCun, Y.; Bengio, Y.; and Hinton, G. (2015). Deep
learning. Nature 521(7553):436–444.
Purushotham, S., Meng, C., Che, Z., & Liu, Y. (2017).
Benchmark of deep learning models on large healthcare
MIMIC datasets. arXiv preprint arXiv:1710.08531.
Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L., Feng,
M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-
III, a freely accessible critical care database. Scientific
Data, 3, 160035.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018,
December). A comparison of ARIMA and LSTM in
forecasting time series. In 2018 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA) (pp. 1394-1401). IEEE.
Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019). A
Comparative Analysis of Forecasting Financial Time
Series Using ARIMA, LSTM, and BiLSTM. arXiv
preprint arXiv:1911.09512.
Silva, I., Moody, G., Scott, D. J., Celi, L. A., & Mark, R. G.
(2012). Predicting in-hospital mortality of ICU patients:
The PhysioNet/Computing in Cardiology Challenge
2012. In Proceedings of the 2012 Computing in
Cardiology (pp. 245-248). IEEE.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: a simple way to
prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1), 1929-1958.
Wang, Z., Yan, W., & Oates, T. (2017). Time series
classification from scratch with deep neural networks:
A strong baseline. In Proceedings of the 2017
International Joint Conference on Neural Networks
(IJCNN) (pp. 1578-1585). IEEE.
Yang, Q., & Wu, X. (2006). 10 Challenging problems in
data mining research. International Journal of
Information Technology & Decision Making, 5(04),
597-604.
Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014,
June). Time series classification using multi-channels
deep convolutional neural networks. In International
Conference on Web-Age Information Management (pp.
298-310). Springer, Cham.
Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2016).
Exploiting multi-channels deep convolutional neural
networks for multivariate time series classification.
Frontiers of Computer Science, 10(1), 96-112.