detection. JMLR, Multidisciplinary Digital Publish-
ing Institute.
Bishop, C. (2006). Pattern Recognition and Machine
Learning. Springer.
Chandola, V., Banerjee, A., and Kumar, V. (2009).
Anomaly detection: A survey. ACM computing sur-
veys (CSUR), 41(3):1–58.
Gao, C., Zhou, J., Wong, W. K., and Gao, T. (2019). Woven
fabric defect detection based on convolutional neural
network for binary classification. In Wong, W. K.,
editor, Artificial Intelligence on Fashion and Textiles,
pages 307–313, Cham. Springer International Pub-
lishing.
Han, Y.-J. and Yu, H.-J. (2020). Fabric defect detection
system using stacked convolutional denoising auto-
encoders trained with synthetic defect data. Applied
Sciences, 10(7).
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hendrycks, D., Mu, N., Cubuk, E. D., Zoph, B., Gilmer, J.,
and Lakshminarayanan, B. (2020). AugMix: A sim-
ple data processing method to improve robustness and
uncertainty. Proceedings of the International Confer-
ence on Learning Representations (ICLR).
Hu, G., Huang, J., Wang, Q., Li, J., Xu, Z., and Huang, X.
(2019). Unsupervised fabric defect detection based on
a deep convolutional generative adversarial network.
Textile Research Journal, 0(0):0040517519862880.
Karayiannis, Y. A., Stojanovic, R., Mitropoulos, P., Koula-
mas, C., Stouraitis, T., Koubias, S., and Papadopou-
los, G. (1999). Defect detection and classification on
web textile fabric using multiresolution decomposi-
tion and neural networks. In ICECS’99. Proceedings
of ICECS ’99. 6th IEEE International Conference on
Electronics, Circuits and Systems (Cat. No.99EX357),
volume 2, pages 765–768 vol.2.
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun,
Y., editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.
Le, X., Mei, J., Zhang, H., Zhou, B., and Xi, J. (2020). A
learning-based approach for surface defect detection
using small image datasets. Neurocomputing.
Ledoit, O., Wolf, M., et al. (2004). A well-conditioned
estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis, 88(2):365–411.
Lee, K., Lee, K., Lee, H., and Shin, J. (2018). A simple uni-
fied framework for detecting out-of-distribution sam-
ples and adversarial attacks. In Advances in Neural
Information Processing Systems, pages 7167–7177.
Liu, J., Wang, C., Su, H., Du, B., and Tao, D. (2019). Mul-
tistage gan for fabric defect detection. IEEE Transac-
tions on Image Processing.
Mahalanobis, P. C. (1936). On the generalized distance in
statistics. National Institute of Science of India.
Mei, S., Wang, Y., and Wen, G. (2018). Automatic fabric
defect detection with a multi-scale convolutional de-
noising autoencoder network model. Sensors, 18(4).
Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y.
(2018). Spectral normalization for generative ad-
versarial networks. In International Conference on
Learning Representations.
Newman, T. S. and Jain, A. K. (1995). A survey of auto-
mated visual inspection. Computer vision and image
understanding, 61(2):231–262.
Rippel, O., Mertens, P., and Merhof, D. (2020a). Mod-
eling the distribution of normal data in pre-trained
deep features for anomaly detection. arXiv preprint
arXiv:2005.14140.
Rippel, O., M
¨
uller, M., and Merhof, D. (2020b). GAN-
based defect synthesis for anomaly detection in fab-
rics. In 2020 IEEE 25th International Conference
on Emerging Technologies and Factory Automation
(ETFA). IEEE.
Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Mon-
tavon, G., Samek, W., Kloft, M., Dietterich, T. G.,
and M
¨
uller, K.-R. (2020a). A unifying review of
deep and shallow anomaly detection. arXiv preprint
arXiv:2009.11732.
Ruff, L., Vandermeulen, R. A., Franks, B. J., M
¨
uller,
K.-R., and Kloft, M. (2020b). Rethinking assump-
tions in deep anomaly detection. arXiv preprint
arXiv:2006.00339.
Schwarz, G. et al. (1978). Estimating the dimension of a
model. The annals of statistics, 6(2):461–464.
See, J. E. (2012). Visual inspection: a review of the lit-
erature. Sandia Report SAND2012-8590, Sandia Na-
tional Laboratories, Albuquerque, New Mexico.
Shi, W., Caballero, J., Theis, L., Huszar, F., Aitken, A.,
Ledig, C., and Wang, Z. (2016). Is the deconvolu-
tion layer the same as a convolutional layer? arXiv
preprint arXiv:1609.07009.
Trentin, E. (2018). Soft-constrained neural networks for
nonparametric density estimation. Neural Processing
Letters, 48(2):915–932.
Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. (2016). In-
stance normalization: The missing ingredient for fast
stylization. CoRR, abs/1607.08022.
Weninger, L., Kopaczka, M., and Merhof, D. (2018). De-
fect detection in plain weave fabrics by yarn tracking
and fully convolutional networks. In IEEE Interna-
tional Instrumentation and Measurement Technology
Conference (I2MTC).
Wu, Y., Zhang, X., and Fang, F. (2020). Automatic fabric
defect detection using cascaded mixed feature pyra-
mid with guided localization. Sensors, 20(3).
Zhang, H., Zhang, L., Li, P., and Gu, D. (2018). Yarn-
dyed fabric defect detection with yolov2 based on
deep convolution neural networks. In 2018 IEEE 7th
Data Driven Control and Learning Systems Confer-
ence (DDCLS), pages 170–174.
ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods
470