Chen, C. L. P. and Wang, B. (2020). Random-positioned
license plate recognition using hybrid broad learning
system and convolutional networks. IEEE Transac-
tions on Intelligent Transportation Systems, pages 1–
13.
Chhabra, S., Jain, H., and Saini, S. (2016). Fpga based
hardware implementation of automatic vehicle license
plate detection system. In 2016 International Con-
ference on Advances in Computing, Communications
and Informatics (ICACCI), pages 1181–1187.
Cho, J., Mirzaei, S., Oberg, J., and Kastner, R. (2009).
Fpga-based face detection system using haar classi-
fiers. In FPGA.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In CVPR.
Doll
´
ar, P., Appel, R., Belongie, S., and Perona, P. (2014).
Fast feature pyramids for object detection. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 36(8):1532–1545.
Elbamby, A., Hemayed, E. E., Helal, D., and Rehan, M.
(2016). Real-time automatic multi-style license plate
detection in videos. In Computer Engineering Con-
ference (ICENCO).
Gao, F., Cai, Y., Ge, Y., and Lu, S. (2020). Edf-lpr: a new
encoder decoder framework for license plate recogni-
tion. IET Intelligent Transport Systems, 14(8):959–
969.
Ha, P. S. and Shakeri, M. (2016). License plate automatic
recognition based on edge detection. In 2016 Artificial
Intelligence and Robotics (IRANOPEN), pages 170–
174.
Hradi
ˇ
s, M., Herout, A., and Zemcik, P. (2008). Local
rank patterns - novel features for rapid object detec-
tion. In Proceedings of International Conference on
Computer Vision and Graphics 2008, Lecture Notes
in Computer Science, pages 1–2.
Hsu, G., Chen, J., and Chung, Y. (2013). Application-
oriented license plate recognition. IEEE Transactions
on Vehicular Technology, 62(2):552–561.
Jeffrey, Z. and Ramalingam, S. (2012). High definition li-
cence plate detection algorithm. In Southeastcon.
Khalil, M. S. and Kurniawan, F. (2014). License plate detec-
tion method for real-time video of low-cost webcam
based on hybrid svm-heuristic approach. In Informa-
tion Technology: New Generations (ITNG).
Kyrkou, C. and Theocharides, T. (2011). A flexible paral-
lel hardware architecture for adaboost-based real-time
object detection. In VLSI Systems.
Mai, V., Miao, D., Wang, R., and Zhang, H. (2011). An im-
proved method for vietnam license plate location. In
2011 International Conference on Multimedia Tech-
nology, pages 2942–2946.
Musil, P., Jur
´
anek, R., Musil, M., and Zem
ˇ
c
´
ık, P. (2020).
Cascaded stripe memory engines for multi-scale ob-
ject detection in fpga. IEEE Transactions on Circuits
and Systems for Video Technology, 30(1):267–280.
Nguyen, D. T., Nguyen, T. N., Kim, H., and Lee, H. (2019).
A high-throughput and power-efficient fpga imple-
mentation of yolo cnn for object detection. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 27(8):1861–1873.
Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi, A.
(2015). You only look once: Unified, real-time object
detection. CoRR, abs/1506.02640.
Said, Y. and Atri, M. (2016). Efficient and high-
performance pedestrian detector implementation for
intelligent vehicles. IET Intelligent Transport Sys-
tems, 10(6):438–444.
Sborz, G. A. M., Pohl, G. A., Viel, F., and Zeferino, C. A.
(2019). A custom processor for an fpga-based plat-
form for automatic license plate recognition. In 2019
32nd Symposium on Integrated Circuits and Systems
Design (SBCCI), pages 1–6.
Silva, S. M. and Jung, C. R. (2018). License plate detection
and recognition in unconstrained scenarios. In 2018
European Conference on Computer Vision (ECCV),
pages 580–596.
Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. IJCV.
ˇ
Sochman, J. and Matas, J. (2005). WaldBoost – learning for
time constrained sequential detection. In CVPR.
Wang, S.-Z. and Lee, H.-J. (2003). Detection and recog-
nition of license plate characters with different ap-
pearances. In Proceedings of the 2003 IEEE Interna-
tional Conference on Intelligent Transportation Sys-
tems, volume 2, pages 979–984 vol.2.
Wu, D., Zhang, Y., Jia, X., Tian, L., Li, T., Sui, L., Xie, D.,
and Shan, Y. (2019). A high-performance cnn proces-
sor based on fpga for mobilenets. In 2019 29th In-
ternational Conference on Field Programmable Logic
and Applications (FPL), pages 136–143.
WU, X., QIU, J., and QIU, A. (2020). An efficient li-
cense plate location algorithm based on deep leaming.
In 2020 International Conference on Computer Engi-
neering and Application (ICCEA), pages 543–546.
Xie, L., Ahmad, T., Jin, L., Liu, Y., and Zhang, S. (2018).
A new cnn-based method for multi-directional car li-
cense plate detection. IEEE Transactions on Intelli-
gent Transportation Systems, 19(2):507–517.
Yang, S. Y., Lu, Y. C., Chen, L. Y., and Cherng, D. C.
(2011). Hardware-accelerated vehicle license plate
detection at high-definition image. In 2011 First In-
ternational Conference on Robot, Vision and Signal
Processing, pages 106–109.
Yousefi, E., Nazem Deligani, A. H., Jafari Amirbandi, J.,
and Karimzadeh Kiskani, M. (2019). Real-time scale-
invariant license plate detection using cascade classi-
fiers. In 2019 IEEE Conference on Multimedia Infor-
mation Processing and Retrieval (MIPR), pages 399–
402.
Yuan, Y., Zou, W., Zhao, Y., Wang, X., Hu, X., and Ko-
modakis, N. (2017). A robust and efficient approach
to license plate detection. IEEE Transactions on Im-
age Processing, 26:1102 – 1114.
Zemcik, P., Juranek, R., Musil, P., Musil, M., and Hradis,
M. (2013). High performance architecture for object
detection in streamed videos. In Field Programmable
Logic and Applications (FPL).
VEHITS 2021 - 7th International Conference on Vehicle Technology and Intelligent Transport Systems
20