Harkous, H., Fawaz, K., Lebret, R., Schaub, F., Shin, K. G.,
and Aberer, K. (2018). Polisis: Automated analysis
and presentation of privacy policies using deep learn-
ing. In 27th USENIX Security Symposium (USENIX
Security 18), pages 531–548.
Harkous, H., Fawaz, K., Shin, K. G., and Aberer, K. (2016).
Pribots: Conversational privacy with chatbots. In
Twelfth Symposium on Usable Privacy and Security
(SOUPS) 2016.
Linden, T., Harkous, H., and Fawaz, K. (2018). The pri-
vacy policy landscape after the gdpr. arXiv preprint
arXiv:1809.08396.
McDonald, A. M. and Cranor, L. F. (2008). the cost of
reading privacy policies. I/S: A Journal of Law and
Policy for the Information Society, 4:543.
Milne, G. R., Culnan, M. J., and Greene, H. (2006). A lon-
gitudinal assessment of online privacy notice readabil-
ity. Journal of Public Policy & Marketing, 25(2):238–
249.
Nokhbeh Zaeem, R., Anya, S., Issa, A., Nimergood, J.,
Rogers, I., Shah, V., Srivastava, A., and Barber, K. S.
(2020). Privacycheck v2: A tool that recaps privacy
policies for you. In Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge
Management, pages 3441–3444.
Rana, R., Zaeem, R. N., and Barber, K. S. (2019). An
assessment of blockchain identity solutions: Mini-
mizing risk and liability of authentication. In 2019
IEEE/WIC/ACM International Conference on Web In-
telligence (WI), pages 26–33.
Regard, H. (1980). Recommendation of the council con-
cerning guidelines governing the protection of privacy
and transborder flows of personal data.
Sadeh, N., Acquisti, A., Breaux, T. D., Cranor, L. F., Mc-
Donalda, A. M., Reidenbergb, J. R., Smith, N. A., Liu,
F., Russellb, N. C., Schaub, F., et al. (2013). The us-
able privacy policy project. Technical report, Techni-
cal Report, CMU-ISR-13-119, Carnegie Mellon Uni-
versity.
Tesfay, W. B., Hofmann, P., Nakamura, T., Kiyomoto, S.,
and Serna, J. (2018). Privacyguide: towards an imple-
mentation of the EU GDPR on internet privacy policy
evaluation. In Proceedings of the Fourth ACM Inter-
national Workshop on Security and Privacy Analytics,
pages 15–21. ACM.
ToS;DR (2012). Terms of service; didn’t read.
Union, E. European union law.
Wilson, S., Schaub, F., Dara, A. A., Liu, F., Cherivirala, S.,
Leon, P. G., Andersen, M. S., Zimmeck, S., Sathyen-
dra, K. M., Russell, N. C., et al. (2016a). The creation
and analysis of a website privacy policy corpus. In
Annual Meeting of the Association for Computational
Linguistics, pages 1330–13340.
Wilson, S., Schaub, F., Ramanath, R., Sadeh, N., Liu, F.,
Smith, N. A., and Liu, F. (2016b). Crowdsourcing an-
notations for websites’ privacy policies: Can it really
work? In Proceedings of the 25th International Con-
ference on World Wide Web, pages 133–143.
Zaeem, R. N. and Barber, K. S. (2017). A study of web pri-
vacy policies across industries. Journal of Information
Privacy and Security, 13(4):169–185.
Zaeem, R. N. and Barber, K. S. (2020). The effect of the
GDPR on privacy policies: Recent progress and fu-
ture promise. ACM Transactions on Management of
Information Systems.
Zaeem, R. N., Budalakoti, S., Barber, K. S., Rasheed, M.,
and Bajaj, C. (2016a). Predicting and explaining iden-
tity risk, exposure and cost using the ecosystem of
identity attributes. In 2016 IEEE International Car-
nahan Conference on Security Technology (ICCST),
pages 1–8. IEEE.
Zaeem, R. N., German, R. L., and Barber, K. S. (2018). Pri-
vacycheck: Automatic summarization of privacy poli-
cies using data mining. ACM Transactions on Internet
Technology (TOIT), 18(4):53.
Zaeem, R. N., Manoharan, M., and Barber, K. S. (2016b).
Risk kit: Highlighting vulnerable identity assets for
specific age groups. In 2016 European Intelligence
and Security Informatics Conference (EISIC), pages
32–38. IEEE.
Zaeem, R. N., Manoharan, M., Yang, Y., and Barber, K. S.
(2017). Modeling and analysis of identity threat be-
haviors through text mining of identity theft stories.
Computers & Security, 65:50–63.
Zaiss, J., Nokhbeh Zaeem, R., and Barber, K. S. (2019).
Identity threat assessment and prediction. Journal of
Consumer Affairs, 53(1):58–70.
Zimmeck, S. and Bellovin, S. M. (2014). Privee: An archi-
tecture for automatically analyzing web privacy poli-
cies. In 23rd USENIX Security Symposium (USENIX
Security 14), pages 1–16, San Diego, CA. USENIX
Association.
Zimmeck, S., Story, P., Smullen, D., Ravichander, A.,
Wang, Z., Reidenberg, J., Russell, N. C., and Sadeh,
N. (2019). Maps: Scaling privacy compliance analysis
to a million apps. Proceedings on Privacy Enhancing
Technologies, 2019(3):66–86.
Zimmeck, S., Wang, Z., Zou, L., Iyengar, R., Liu, B.,
Schaub, F., Wilson, S., Sadeh, N., Bellovin, S., and
Reidenberg, J. (2016). Automated analysis of privacy
requirements for mobile apps. In 2016 AAAI Fall Sym-
posium Series.
ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence
40