Hipni, A., El-shafie, A., Najah, A., Karim, O.A., Hussain,
A., Mukhlisin, M., 2013. Daily Forecasting of Dam
Water Levels: Comparing a Support Vector Machine
(SVM) Model With Adaptive Neuro Fuzzy Inference
System (ANFIS). Water Resource Management, 27,
3803-3823.
Hoek, G., Brunekreef, B., Goldbohm, S., Fischer, P., van
den Brandt, P.A., 2002. Association between mortality
and indicators of traffic-related air pollution in the
Netherlands: A cohort study. Lancet, 360, 1203–1209.
Hülsmann, F., Gerike, R., Ketzel, M., 2014. Modelling
traffic and air pollution in an integrated approach – the
case of Munich, Urban Climate, 10, 732-744.
Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy
inference system, IEEE Transactions on Systems, Man,
and Cybernetics, 23 (3), 665-685, doi:
10.1109/21.256541.
Klæboe, R., Kolbenstvedt, M., Clench-Aas, J., Bartonova,
A., 2000. Oslo traffic study—Part 1: An integrated
approach to assess the combined effects of noise and air
pollution on annoyance. Atmospheric Environment, 34,
4727–4736.
Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel,
O., Filliger, P., Herry, M., Horak, F., Jr.; Puybonnieux-
Texier, V.; Quénel, P., et al., 2000. Public-health impact
of outdoor and traffic-related air pollution: A European
assessment. Lancet, 356, 795–801.
Lin H., Jin J. and van den Herik J. (2019). Air Quality
Forecast through Integrated Data Assimilation and
Machine Learning.In Proceedings of the 11th
International Conference on Agents and Artificial
Intelligence - Volume 2: ICAART, ISBN 978-989-758-
350-6, pages 787-793. DOI:
10.5220/0007555207870793
Lorente, A., Boersma, K.F., Eskes, H.J., Veefkind, J.P., van
Geffen, J.H.G.M., de Zeeuw, M.B., Denier van der
Gon, H.A.C., Beirle, S., Krol, M.C., 2019.
Quantification of nitrogen oxides emissions from build-
up of pollution over Paris with TROPOMI. Scientific
Repeports, 9, 20033, DOI: 10.1038/s41598-019-56428-
5.
Lu, W., Wang, W., Leung, A.Y.T., Lo, S., Yuen, R.K.K.,
Xu, Z., Fan, H., 2002. Air pollutant parameter
forecasting using support vector machines, Proceedings
of the 2002 International Joint Conference on Neural
Networks. IJCNN'02 (Cat. No.02CH37290), Honolulu,
HI, USA, 2002, pp. 630-635 vol.1, doi:
10.1109/IJCNN.2002.1005545.
Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., Correa,
S.M., 2014. Prediction of ozone concentration in
tropospheric levels using artificial neural networks and
support vector machine at Rio de Janeiro, Brazil,
Atmospheric Environment, 98, 98-104, DOI:
10.1016/j.atmosenv.2014.08.060.
Mehrotra A., Jaya Krishna R., Sharma D.P., 2020. Machine
Learning Based Prediction of PM 2.5 Pollution Level in
Delhi. In: Sharma H., Govindan K., Poonia R., Kumar
S., El-Medany W. (eds) Advances in Computing and
Intelligent Systems. Algorithms for Intelligent Systems.
Springer, Singapore. https://doi.org/10.1007/978-981-
15-0222-4_9
Mihalache, S.F., Popescu, M., 2016. Development of
ANFIS Models for PM Short-term Prediction. Case
Study. 8th International Conference on Electronics,
Computers and Artificial Intelligence (ECAI), Ploiesti,
2016, pp. 1-6, doi: 10.1109/ECAI.2016.7861073.
Molina-Cabello, M. A., Passow, B., Domínguez, E.,
Elizondo, D., Obszynska, J., 2019. Infering Air Quality
from Traffic Data Using Transferable Neural Network
Models, in: Advances in Computational Intelligence,
15th International Work-Conference on Artificial
Neural Networks, IWANN 2019, Gran Canaria, Spain,
June 12-14, 2019, Proceedings, Part I, pp.832-843,
DOI: 10.1007/978-3-030-20521-8_68.
Oprea, M., Popescu, M., Mihalache, S., Dragomir, E., 2017.
Data Mining and ANFIS Application to Particulate
Matter Air Pollutant Prediction. A Comparative Study,
in Proceedings of the 9th International Conference on
Agents and Artificial Intelligence - Volume 1:
ICAART, ISBN 978-989-758-220-2, pages 551-558.
DOI: 10.5220/0006196405510558
Pawlak, I., Jaroslawski, J., 2019. Forecasting of Surface
Ozone Concentration by Using Artificial Neural
Networks in Rural and Urban Areas in Central Poland,
Atmosphere, 10, 52.
Pope, C.A., III; Burnett, R.T.; Thun, M.J., Calle, E.E.,
Krewski, D., Ito, K., Thurston, G.D., 2002. Lung
cancer, cardiopulmonary mortality, and long-term
exposure to fine particulate air pollution. JAMA, 287,
1132–1141.
Qadir, R.M., Abbaszade, G., Schnelle-Kreis, J., Chow, J.C.,
Zimmermann, R., 2013. Concentrations and source
contributions of particulate organic matter before and
after implementation of a low emission zone in Munich,
Germany, Environmental Pollution, 175, 158-167.
Quej, V., Almorox, J. Arnaldo, J.A., Saito, L., 2017.
ANFIS, SVM and ANN soft-computing techniques to
estimate daily global solar radiation in a warm sub-
humid environment, Journal of Atmospheric and Solar-
Terrestrial Physics, 155, 62-70.
The Lancet Commission, 2017. The Lancet Commission on
Pollution and Health. Lancet, doi: 10.1016/S0140-
6736(17)32345-0.
Vapnik, V., 1995. The Nature of Statistical Learning
Theory, Springer, New York.
Wei, M., Bai, B., Sung, A.H., Liu, Q., Wang, J., Cather,
M.E., 2007. Predicting injection profiles using ANFIS,
Information Sciences, 177 (2), 4445-4461.
Zhang, K., Batterman, S., 2013. Air pollution and health
risks due to vehicle traffic. The Science of the total
environment, 450, 307–316.