ACKNOWLEDGMENT
This work is supported by the National Key R&D
Program of China (Grants No. 2017YFE0111900,
2018YFB1003205).
REFERENCES
Wu, Y. , Lim, J. , & Yang, M. H. . (2013). Online Object
Tracking: A Benchmark. Computer Vision & Pattern
Recognition. IEEE.
Wang, N. , Shi, J. , Yeung, D. Y. , & Jia, J. . (2015).
Understanding and diagnosing visual tracking systems.
Marvasti-Zadeh, Seyed Mojtaba & Cheng, Li & Ghanei-
Yakhdan, Hossein & Kasaei, Shohreh. (2019). Deep
Learning for Visual Tracking: A Comprehensive Survey.
Sevilla-Lara, L. , & Learned-Miller, E. . (2012).
Distribution fields for tracking. Computer Vision &
Pattern Recognition. IEEE.
Liu, B. , Huang, J. , Yang, L. , & Kulikowski, C. A. . (2011).
Robust tracking using local sparse appearance model
and K-selection. IEEE Conference on Computer Vision
& Pattern Recognition. IEEE.
Kwon, J. , & Lee, K. M. . (2011). Tracking by Sampling
Trackers. International Conference on Computer Vision.
IEEE.
Mei, X. , Ling, H. , Wu, Y. , & Blasch, E. P. . (2013).
Efficient minimum error bounded particle resampling
l1 tracker with occlusion detection. IEEE Transactions
on Image Processing, 22(7), 2661-2675.
Zhang, K. , Zhang, L. , & Yang, M. H. . (2012). Real-Time
Compressive Tracking. European Conference on
Computer Vision. Springer, Berlin, Heidelberg.
Li, X. , Ma, C. , Wu, B. , He, Z. , & Yang, M. H. . (2019).
Target-Aware Deep Tracking. 2019 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE.
Wang, N. , Zhou, W. , Tian, Q. , Hong, R. , & Li, H. . (2018).
Multi-Cue Correlation Filters for Robust Visual
Tracking. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE.
Bolme, D. S. , Beveridge, J. R. , Draper, B. A. , & Lui, Y.
M. . (2010). Visual object tracking using adaptive
correlation filters. The Twenty-Third IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2010, San Francisco, CA, USA, 13-18 June 2010. IEEE.
Henriques, J. F. , Caseiro, R. , Martins, P. , & Batista, J. .
(2012). Exploiting the circulant structure of tracking-
by-detection with kernels.
Henriques, J. F. , Caseiro, R. , Martins, P. , & Batista, J. .
(2015). High-speed tracking with kernelized correlation
filters. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 37(3), 583-596.
Danelljan, M. , Gustav Häger, Khan, F. S. , & Felsberg, M. .
(2014). Accurate Scale Estimation for Robust Visual
Tracking. British Machine Vision Conference.
Danelljan, M. , Khan, F. S. , Felsberg, M. , & Weijer, J. V.
D. . (2014). Adaptive Color Attributes for Real-Time
Visual Tracking. IEEE Conference on Computer Vision
& Pattern Recognition. IEEE.
Cai, Z. , Wen, L. , Lei, Z. , Vasconcelos, N. , & Li, S. Z. .
(2014). Robust deformable and occluded object
tracking with dynamic graph. IEEE Transactions on
Image Processing, 23(12).
Li, Y. , & Zhu, J. . (2014). A scale adaptive kernel
correlation filter tracker with feature integration.
Bertinetto, L. , Valmadre, J. , Golodetz, S. , Miksik, O. , &
Torr, P. H. S. . (2016). Staple: Complementary Learners
for Real-Time Tracking. Computer Vision & Pattern
Recognition. IEEE.
Possegger, H. , Mauthner, T. , & Bischof, H. . (2015). In
defense of color-based model-free tracking. Computer
Vision & Pattern Recognition. IEEE.
Danelljan, M. , Hger, G. , Khan, F. S. , & Felsberg, M. .
(2016). Learning spatially regularized correlation filters
for visual tracking.
Wang, M. , Liu, Y. , & Huang, Z. . (2017). Large margin
object tracking with circulant feature maps.
Wu, Y. , Lim, J. , & Yang, M. H. . (2015). Object tracking
benchmark. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 37(9), 1834-1848.
Babenko, B. , Yang, M. H. , & Belongie, S. . (2011). Robust
object tracking with online multiple instance learning.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(8), 1619-1632.
Danelljan, M. , Hager, G. , Khan, F. S. , & Felsberg, M. .
(2016). Discriminative scale space tracking. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, PP(99), 1-1.