Given these promising results, we plan to extend
our work to support other templates of user stories.
Moreover, we plan to further assess the effectiveness
of the approach on larger software requirement doc-
uments, possibly taken from different domains using
a prediction model (word2vec) trained with domain-
specific corpus.
REFERENCES
Alexander, I. F. and Maiden, N. A. M. (2004). Scenar-
ios,stories, use cases: Through the systems develop-
ment life-cycle.
Amannejad, Y., Moshirpour, M., Far, B. H., and Al-
hajj, R. (2014). From requirements to software de-
sign: An automated solution for packaging software
classes. In Proceedings of the 2014 IEEE 15th Inter-
national Conference on Information Reuse and Inte-
gration (IEEE IRI 2014), pages 36–43.
Arora, C., Sabetzadeh, M., Briand, L. C., and Zimmer,
F. (2016). Extracting domain models from natural-
language requirements: approach and industrial eval-
uation. In MODELS ’16.
Barbosa, R., Januario, D., Silva, A. E., de Oliveira Moraes,
R. L., and Martins, P. (2015). An approach to clus-
tering and sequencing of textual requirements. 2015
IEEE International Conference on Dependable Sys-
tems and Networks Workshops, pages 39–44.
Baroni, M., Dinu, G., and Kruszewski, G. (2014). Don’t
count, predict! a systematic comparison of context-
counting vs. context-predicting semantic vectors. In
Proceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 238–247, Baltimore, Maryland.
Association for Computational Linguistics.
Bittner, K. (2002). Use Case Modeling. Addison-Wesley
Longman Publishing Co., Inc., USA.
Booch, G., Rumbaugh, J. E., Jacobson, I., and Hoberman,
S. (2015). The unified modeling language user guide
(2nd edition).
Casamayor, A., Godoy, D., and Campo, M. R. (2012).
Functional grouping of natural language requirements
for assistance in architectural software design. Knowl.
Based Syst., 30:78–86.
Cohn, M. (2004). User Stories Applied: For Agile Software
Development. Addison Wesley Longman Publishing
Co., Inc., USA.
Dunn, J. C. (1974). Well-separated clusters and optimal
fuzzy partitions.
Elallaoui, M., Nafil, K., and Touahni, R. (2015). Auto-
matic generation of uml sequence diagrams from user
stories in scrum process. In 2015 10th International
Conference on Intelligent Systems: Theories and Ap-
plications (SITA), pages 1–6.
Elallaoui, M., Nafil, K., and Touahni, R. (2018). Automatic
transformation of user stories into uml use case dia-
grams using nlp techniques. In ANT/SEIT.
Gilson, F. and Irwin, C. (2018). From user stories to use
case scenarios towards a generative approach. 2018
25th Australasian Software Engineering Conference
(ASWEC), pages 61–65.
Hotho, A., Nürnberger, A., and Paass, G. (2005). A brief
survey of text mining. LDV Forum, 20:19–62.
Jalab, H. A. and Kasirun, Z. M. (2014). Towards require-
ments reuse: Identifying similar requirements with la-
tent semantic analysis and clustering algorithms.
Jones, K. S. (1988). A statistical interpretation of term
specificity and its application in retrieval. Journal of
Documentation, 60:493–502.
Kassab, M. (2015). The changing landscape of require-
ments engineering practices over the past decade. In
2015 IEEE Fifth International Workshop on Empirical
Requirements Engineering (EmpiRE), pages 1–8.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. In EMNLP.
Lapata, M. and Barzilay, R. (2005). Automatic evaluation
of text coherence: Models and representations. In IJ-
CAI.
Lebret, R. and Collobert, R. (2014). Word embeddings
through hellinger pca. In EACL.
Lindvall, M., Basili, V. R., Boehm, B. W., Costa, P., Dangle,
K. C., Shull, F., Tvedt, R. T., Williams, L. A., and
Zelkowitz, M. V. (2002). Empirical findings in agile
methods. In XP/Agile Universe.
Löffler, R., Güldali, B., and Geisen, S. (2010). To-
wards model-based acceptance testing for scrum.
Softwaretechnik-Trends, 30.
Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and
Brinkkemper, S. (2016a). The use and effectiveness
of user stories in practice. In REFSQ.
Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and
Brinkkemper, S. (2016b). Visualizing user story re-
quirements at multiple granularity levels via semantic
relatedness. In ER.
Manning, C. D., Raghavan, P., and Schütze, H. (2005). In-
troduction to information retrieval.
Mihalcea, R., Corley, C., and Strapparava, C. (2006).
Corpus-based and knowledge-based measures of text
semantic similarity. In AAAI.
Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order
into texts. In EMNLP 2004.
Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,
and Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. ArXiv,
abs/1310.4546.
Perner, P. (2002). Data mining - concepts and techniques.
KI, 16:77.
Rodriguez, M. A. and Egenhofer, M. J. (2003). Deter-
mining semantic similarity among entity classes from
different ontologies. IEEE Trans. Knowl. Data Eng.,
15:442–456.
Salman, H. E., Hammad, M., Seriai, A.-D., and Al-Sbou,
A. (2018). Semantic clustering of functional require-
ments using agglomerative hierarchical clustering. In-
formation, 9:222.
From User Stories to Models: A Machine Learning Empowered Automation
39